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ABSTRACT

In the context of a theoretical model for the interaction between an active fund manager

and a risk-averse investor, we show that mutual fund fees should exhibit a positive concave

dependence on their idiosyncratic volatilities. The crucial ingredients are the infeasibility

of short-selling the fund, and the fact that its idiosyncratic volatility generates uncertainty

about its performance. Our empirical investigations provide strong support for this result.

In fact, idiosyncratic volatility appears to be the most important determinant of mutual

fund fees. Moreover, we demonstrate that when it is included as an explanatory variable in

cross-sectional regressions, the widely-reported negative dependence of fees on performance

dissipates. Significantly, our resolution for this puzzle does not require assumptions of in-

vestor unsophistication or fund manager opportunism. In fact, we provide positive evidence

for a certain amount of investor sophistication, by demonstrating their apparent unwilling-

ness to pay active fees for passive performance, as predicted by our model.

Keywords: Mutual fund fees; idiosyncratic risk; uncertainty; short-selling
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Fraction-of-fund fees are the predominant feature of advisory compensation contracts in the

mutual fund industry. In this study, we provide new intriguing evidence on the determinants

of advisory fees. Our argument can be summarized by illustrating a striking feature of the

empirical sensitivity of mutual fund advisory fees to performance. Figure 1 exhibits the existence

of a U-shaped dependence of fees on either before- or after-fees risk-adjusted performance. This

nonlinear fee-performance sensitivity implies that both the best-performing funds and the worst-

performing funds appear responsible for the highest advisory fees. It is curious that although

this U-shaped dependence of fees on performance is implicit in the mutual fund literature (see

e.g. Gruber (1996), Carhart (1997), Kosowski, Timmermann, Wermers, and White (2006), Gil-

Bazo and Ruiz-Verdú (2009)), it has gone unremarked until now. We provide a parsimonious

explanation for this nonlinearity and show that it reveals an overlooked determinant of advisory

fees, namely fund idiosyncratic volatility.

** INSERT FIGURE 1 HERE **

Since funds with either good or bad estimated performance are characterized by higher

standard errors of these estimates, and since these standard errors are naturally proportional

to their associated idiosyncratic volatilities, it follows that nonlinear fee-performance sensitivi-

ties could exist only if mediated by a significant positive dependence of advisory fees on fund

idiosyncratic volatilities. The evidence of Figure 1 illustrates this point clearly using percentiles

of idiosyncratic volatility: Advisory fees are a positive function of idiosyncratic risk. Our main

contribution is to provide an economic explanation for this relationship and also casts new light

on the role of mutual fund performance and investors sophistication for mutual fund fee-setting

policies.

Why do mutual funds with higher idiosyncratic volatility set above-average advisory fees?

To address this question, we develop a theoretical model of the interaction between a risk-averse

investor and a risk-neutral mutual fund manager. The objective of the investor is to maximize

the expected utility of his terminal wealth, by allocating his initial wealth optimally across a

risk-free money-market account, the market portfolio, and the mutual fund. The fund manager,

on the other hand, generates an income by charging the investor a fee, expressed as a percentage

of the end-of-period assets under management. His objective is to maximize his income. Our

model is based on two fundamental assumptions which are consistent with the characteristics

of the mutual fund industry: (i) the existence of idiosyncratic noise in performance impairs

investors ability to differentiate skill from luck in the cross section of mutual fund returns; and

(ii) the impossibility to short-sell mutual fund shares. The first assumption is supported by

several studies documenting the existence of significant idiosyncratic volatility in mutual fund
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performance. Kosowski, Timmermann, Wermers, and White (2006) emphasize the importance

of controlling for idiosyncratic volatility in fund performance when evaluating fund managers

skills. Khorana (1996) shows that the noise in performance could impair the decision of the

management company to replace fund managers. Berk and Green (2004) argue that higher

idiosyncratic noise in observed returns would increase investor uncertainty about fund managers

ability. More recently, Huang, Wei, and Yan (2012) show that high volatility in mutual fund

performance dampens the response to past performance of rational investors.

Our second assumption short selling constraint is widely accepted in the literature, and re-

flects the fact that the management company is the counter-party for all purchases and redemp-

tions of shares in the fund, which are settled at net-asset-value. Consistent with the argument

by Miller (1977), our model predicts that the existence of strict short selling constraints reduces

the supply of funds with high idiosyncratic volatility in the market, consequently preventing

short sales from moderating the tendency of riskier funds characterized by high idiosyncratic

volatility to charge higher advisory fees.

The papers contribution is in four areas. First, our study shows that the optimal advisory

fee derived explicitly from our model is both monotonically increasing and generally concave

in the idiosyncratic volatility of the fund, and monotonically increasing in fund gross perfor-

mance. Since higher idiosyncratic volatility makes investors more likely to overestimate fund

performance substantially, the increasing (in idiosyncratic volatility) uncertainty about funds

performance causes investors optimal allocation to exhibit a positive convex dependence on their

estimates of fund performance. In this context, the optimal fee charged by the fund becomes a

contingent claim on the investors estimate of its performance. In a simulation framework, we

show that our model reproduces very closely the empirical relationships observed in the data.

These simulated sensitivities are compared to the empirical sensitivities in Figure 1.

Using a sample of US open-end active equity mutual funds over the period from 1993 to

2007, we verify that fund advisory fees do indeed exhibit a strongly positive and concave cross-

sectional dependence on idiosyncratic risk, as predicted by our model. Specifically, a-one stan-

dard deviation increase in idiosyncratic volatility corresponds to a 25 basis point increase in

both operating expenses and management fees.1 We observe that this relationship survives

even after controlling for a host of fund and family characteristics, investment objectives, share

classes, and investors sensitivities that are known to affect fees from previous literature. Our

1Recurring mutual fund operating expenses have a number of components, the largest of which are advisory or
management fees, followed by 12b-1 fees (i.e. marketing and distribution costs). In addition, there are sometimes
also once-off charges, called loads. Strictly speaking, the fee considered in our model should be interpreted as a
management fee. However, when testing the predictions of our model against empirical data, we report separately
the results for management fees and total operating expenses, in the service of transparency.
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findings indicate that idiosyncratic volatility impairs significantly investors ability to assess fund

managers performance consequently inducing a strong cross-sectional relationship between this

volatility and advisory fees.

In their study, Barber, Odean, and Zheng (2005) hypothesized that the steady drain on fund

performance constituted by operating expenses could be masked by the considerable volatility

in mutual fund returns. They argue that investors could be less likely to avoid funds with high

operating expenses if these funds are also those characterized by high performance volatility.

Similarly, Deli (2002) shows that funds characterized by greater return volatility are associated

with higher marginal compensation rates and concludes that this evidence could be somehow a

reflection of cross-sectional differences in the difficulty of performance monitoring due to greater

volatility. Our model and empirical analysis establish a framework to explain the dispersion in

advisory compensation as captured by fund idiosyncratic volatility, and suggest a provocative

connection between fund fees and contingent claims.

Our second contribution is to show that our documented positive sensitivity of advisory

payoffs to idiosyncratic volatility sheds new light on a number of anomalies that have been

previously identified in the mutual fund literature. Explicitly, several papers including Gruber

(1996), Malkiel (1995), Carhart (1997), Sirri and Tufano (1998), Harless and Peterson (1998),

Wermers (2000), Wermers (2003), Christoffersen and Musto (2002), Hortacsu and Syverson

(2004), Kuhnen (2005), Gil-Bazo and Ruiz-Verdú (2009) have provided evidence of a puzzling

negative relationship between advisory fees and mutual fund (gross or net) performance. This

evidence has awkward economic implications, since it is incompatible with even the most chari-

table interpretation of investor rationality as it suggests that investors are willing to pay above-

average advisory fees to their underperforming managers. Christoffersen and Musto (2002) and

Gil-Bazo and Ruiz-Verdú (2009) explain this anomaly by appealing to the existence of an ex-

ogenously convex flow-performance relationship according to which performance-insensitive (or

sleeping) investors do not promptly flee poor performing funds. They argue that the scarce

elasticity of investor demand incentivizes underperforming fund managers to extract rents by

charging higher advisory fees. As such, investors performance unsophistication, combined with

fund managers rent-seeking behavior, has been interpreted as an important determinant of fund

fee-setting policies.

On the contrary, our study shows that previous estimates of the fee-performance sensitivity

are significant negatively biased as they do not account for the cross-sectional variation in fund

idiosyncratic volatility. We provide clear evidence that the problematic negative fee-performance

sensitivity is animated by an omitted variable bias. This result is first established in the context
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of a simulated environment, before being demonstrated empirically. Our findings are reminis-

cent of the empirical evidence documented in the literature on executive compensation whence

pay-performance sensitivity is a decreasing function of the level of (idiosyncratic) volatility in

performance (Aggarwal and Samwick (1999), Garen (1994), and Jin (2002). We illustrate that

in the case of mutual fund advisory fees the omission bias is originated by the failure to con-

trol for the relationship between fees and idiosyncratic volatility, which is also higher among

funds inhabiting the tails of the estimated performance distribution. We show that when the

fee-performance sensitivity is estimated by including as a regressor idiosyncratic volatility, and

its interaction with performance, the negative fee-performance sensitivity disappears, leaving a

positive albeit not always significant relationship.

Third, our model also predicts that investors allocation to a mutual fund is totally inde-

pendent of its systematic risk exposure and suggests that investors are unwilling to pay active

management fees for passive performance, which can be obtained at a significant lower cost via

the market portfolio. Our empirical findings confirm the model prediction and indicate that the

optimal fee charged by fund managers is invariant with respect to the systematic risk of their

managed portfolio. This evidence also suggests that mutual fund investors are risk-averse, and

hence sensitive to performance.

Our fourth contribution is to examine whether the dispersion of advisory fees is a function

of investor sensitivity. We conclude that fund managers do not charge higher fees to exploit

the density of performance-insensitive investors in the worse-prospect funds. In particular,

we illustrate that the previous argument proposed in the literature that fund managers would

opportunistically charge higher fees to their disadvantaged investors does not consider the pos-

sibility that investors may be more sophisticated than previously thought. Consistent with

Huang, Wei, and Yan (2012), our theoretical and empirical findings show that as idiosyncratic

noise in performance increases, investors learn less from performance about fund manager skill,

and a given return triggers less response in flows. After controlling for the dampening effect on

investors flows of idiosyncratic volatility, which our model predicts to be also positively related

to advisory fees, we show that the fees are not higher among investors with lower performance

sensitivity. Using several proxies for investors’ flow-performance sensitivity, we provide robust

evidence which is inconsistent with the arguments based on investors’ self-selection and fund

managers’ opportunism.

Overall, our paper is related to the growing body of literature on the determinants of fund

advisory fees. Previous studies have suggested that cross-sectional differences in advisory com-

pensation rates could depend on several factors such as: marginal product of fund advisors
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(Golec (1992), Tufano and Sevick (1997), Jeffrey L. Coles and Woodbury (2000), and Deli

(2002)), economies of scale of the fund or the family (Chen, Hong, Huang, and Kubik (2004),

Warner and Wu (2001), and , Elton, Gruber, and Blake (2012)), differences in fund investment

styles and active shares (Deli (2002), Kuhnen (2005), and Cremers and Petajisto (2009)), dif-

ferences in funds internal (Tufano and Sevick (1997)) and external (Capon, Fitzsimons, and

Prince (1996), Christoffersen and Musto (2002), and Gil-Bazo and Ruiz-Verdú (2009)) control

environments. We add to this body of research by emphasizing the remarkable role of investors

uncertainty and institutional short-sale constraints for the cross-sectional dispersion of mutual

fund advisory compensation. Our paper also contributes to the extensive literature on the

compensation of decision makers by providing a model of the determinants of advisory compen-

sation and new empirical evidence on the effect of idiosyncratic volatility on pay-performance

sensitivities.

The remainder of the article is structured as follows. Section I introduces the model, and

presents the theoretical results that emanate from it. Section II reports on the Monte Carlo

experiment described earlier. Section III formulates the empirically testable hypotheses and

describes the data and the methodology employed in the empirical part of the article. Section IV

presents the findings of the empirical analysis. Finally, Section V offers some conclusions, and

Appendix A proves the theoretical results presented in Section I.

I. A Model for Mutual Fund Fees

This section investigates a model for the interaction between a risk-neutral mutual fund

manager and a risk-averse investor. The investor is uncertain about the performance of the

fund, and is unable to sell its shares short. We examine how the fee-setting policy of the fund

manager responds to the investor’s constraints.

A. The Model Framework

We consider a single-period economy comprising a risk-free money-market account, the

market portfolio, and an active mutual fund. The risk-free return is taken to be zero, while

the market portfolio is assumed to pay a normally distributed return rM ∼ N (µM, σ
2
M). The

before-fee return offered by the the mutual fund is specified by

rP = α+ βrM + ε, (1)

where ε ∼ N (0, σ2
ε).
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Our analysis focuses on the interaction between the fund manager and a risk-averse investor,

whom we regard as a representative stand-in for a large number of identical investors. The

investor attempts to maximise his expected utility from terminal wealth, by optimally allocating

his initial wealth across the three available assets. However, the fund’s idiosyncratic volatility

induces uncertainty about its performance, while his portfolio choice is constrained by the fact

that the fund cannot be sold short. In addition, we assume that the investor is only boundedly

rational, in the sense that he makes an optimal portfolio decision, based on his belief about the

fund’s performance, without exploiting the performance information inherent in the fee itself.

The fund manager’s objective is to maximise his expected income, by choosing an optimal

advisory fee, which is communicated to the investor in advance.2 Since the return earned by

the investor from his contribution to the fund is adversely affected by the fee, it is clear that a

very large fee would discourage him, and would therefore be suboptimal for the fund manager,

whose income in that case would correspond to a very large portion of a relatively small value of

assets under management. Conversely, a very small fee would conceivably entice the investor to

contribute a relatively large portion of his wealth to the fund, but it would also be suboptimal

for the fund manager, since his income would then correspond to a very small portion of a

relatively large value of assets under management.

B. The Investor’s Problem

We assume that the investor estimates the before-fee performance of the mutual fund by

sampling from a normal distribution:

Assumption 1. The investor believes that the fund’s before-fee alpha is α̂ ∼ N (α, σ2
ε).

The intuition underlying this assumption is that the investor’s uncertainty about the fund’s

performance is proportional to its idiosyncratic volatility. This idea finds support in the empir-

ical asset pricing literature, where ?, among others, use idiosyncratic volatility as a proxy for

the dispersion of investor opinions about the performance of common stock.

Assumption 1 can also be justified on econometric grounds, since the standard error of the

OLS estimate for the constant term in a linear model is proportional to the standard deviation

of the residual. In detail, if the investor uses OLS regression to estimate the value of α, then

the value of κ > 0 is determined by the size of the sample used for that purpose. Since a smaller

2Mutual fund fees consist of advisory fees, 12b-1 fees, and various other administrative costs. Of these,
advisory fees are the most significant, followed by 12b-1 fees, which are marketing and distribution costs. The
remaining components are comparatively unimportant. Since our model is specifically concerned with advisory
fees, we implicitly assume that marketing and distribution costs, as well as all other expenses, are zero.
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value for κ implies that the investor is generally better at judging the fund’s true performance,

we interpret it as an investor expertise parameter.

After completing the estimation procedure above, the investor believes that the before-fee

return of the mutual fund takes the following form:

r̂P = α̂+ βrM + ε.

He then allocates a fraction ξ of his initial wealth w to the mutual fund, and a fraction η to the

market portfolio. The remaining fraction 1− ξ − η is deposited in the money-market account.

We assume that there are no costs associated with the market portfolio or the money-market

account, but an investment in the mutual fund incurs a proportional advisory fee ζ, levied on

the end-of-period assets of the fund.3,4 Finally, we allow the investor to short-sell the market

portfolio and the money-market account, but not the mutual fund. This reflects the fact that

the management company is the counter-party for all purchases and redemptions of shares in

the fund, which are settled at net-asset-value. Short-selling is infeasible without a secondary

market:

Assumption 2. The fraction invested in the mutual fund satistifes ξ ≥ 0.

We use a CARA utility function U(x) := 1 − e−γx, with risk-aversion parameter γ > 0, to

model the investor’s preferences. His objective is to identify the portfolio strategy (ξ∗, η∗) that

maximises his expected utility from terminal wealth, conditional on his estimate for the fund’s

performance:

(ξ∗, η∗) = arg max
(ξ,η)∈R+×R

E
(
U
Ä
W (ξ, η)

ä ∣∣∣∣ α̂), (2)

where

W (ξ, η) := w
(
1 + ξ

Ä
(1− ζ)r̂P − ζ

ä
+ ηrM

)
= w

(
1 + ξ

Ä
(1− ζ)α̂− ζ

ä
+
Ä
η + ξ(1− ζ)β

ä
rM + ξ(1− ζ)ε

) (3)

is his assessment of his terminal wealth, for a given portfolio strategy (ξ, η). Note that the

3It has become easy for investors to obtain cheap passive exposure to the equity market via an array instru-
ments, such as equity index futures, passive mutual funds, and a variety of exchange-traded funds. By comparison,
the fees charged by active mutual funds are very substantial. For example, the median annual expense ratio for
active equity mutual funds was 144 basis points in 2009, while equity index mutual funds offered annual expense
ratios as low as 7 basis points in the same year.

4Our assumption that the management fee levied by the fund is a fraction of the value of its end-of-period
assets under management provides the best match with industry practice. Mutual fund fees are modelled in the
same way by Lynch and Musto (2003), and Hugonnier and Kaniel (2010), for example.
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investor believes that the after-fee return of the fund takes the form

(1− ζ)(1 + r̂P)− 1 = (1− ζ)r̂P − ζ = (1− ζ)α̂− ζ + (1− ζ)βrM + (1− ζ)ε.

His estimate for the fund’s after-fee alpha is thus (1−ζ)α̂−ζ, while its after-fee beta is (1−ζ)β,

and the idiosyncratic component of its after-fee return is (1 − ζ)ε. So, according to (3), the

investor’s assessment of his terminal wealth depends on his estimate for the fund’s after-fee

alpha, as well as its after-fee beta, and its after-fee idiosyncratic return.

It is well-documented that mutual fund investors are sensitive to historical performance,

but that they are indifferent to operating expenses. For example, in an experimental study

of the information investors use to select funds, ? found that his subjects payed a great deal

of attention to past after-fee returns, and that they attached significantly more importance

to loads than to expense ratios. Similarly, Barber, Odean, and Zheng (2005) reported no

relationship between investment flows and operating expenses for equity mutual funds, while

they observed a significant negative relationship between flows and front-end loads. In a more

recent experimental study of investor choice, ? reported that their subjects failed to minimise

operating expenses when choosing index funds, but that they attached substantial importance to

historical after-fee returns. The evidence above suggests that investors are implicitly sensitive to

operating expenses, insofar as they affect after-fee returns, but that they do not treat operating

expenses as informative about before-fee performance:

Assumption 3. The investor makes no inferences about the value of α from the fee ζ.

Since we assume that the fund manager has perfect information about the before-fee perfor-

mance of the fund, a fully rational investor would attempt to extract that information from the

advisory fee. Hence, Assumption 3 implies that the investor in our model is merely boundedly

rational. The following theorem solves his problem:

Theorem 4. The optimal portfolio strategy (ξ∗, η∗) for the investor is given by

ξ∗ =
1

γw

Ä
(1− ζ)α̂− ζ

ä+
(1− ζ)2σ2

ε

and η∗ =
1

γw

µM
σ2
M

− ξ∗(1− ζ)β, (4)

where x+ ≡ max{x, 0} denotes the positive part of x.

Theorem 4 reveals that the investor separates his alpha and beta allocations, in the sense

that the portion of his wealth allocated to the mutual fund depends explicitly on his assessment

of its after-fee alpha, but is invariant with respect to its after-fee beta. Instead, we see that he

relies exclusively on the market portfolio for his beta requirements. In fact, he uses the market
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portfolio to hedge the after-fee beta arising from his exposure to the mutual fund, so that his

decision to invest in it depends only on the tradeoff between its after-fee alpha and its after-fee

idiosyncratic risk.5

The economic intuition underlying the investor’s separation of his alpha and beta allocations

is quite straightforward: since investing in the market portfolio incurs no costs, he has no reason

to compensate the fund manager for the component of the return of the mutual fund that can

be attributed to its exposure to the market portfolio. Instead, he obtains his desired level of

exposure to the market portfolio for free, by investing in it directly, so that his only concern

when considering the mutual fund is the after-fee alpha he expects it to produce, relative to its

level of idiosyncratic risk. In particular, the investor will pay the active management fee only

if he perceives the mutual fund to be a sufficiently attractive source of active performance.

Mutual fund investors are assumed to be risk-neutral in the theoretical models of Gil-Bazo

and Ruiz-Verdú (2008), and Cheng, Massa, and Zhang (2013). Although such an assumption

improves tractability, it also produces qualitatively different investor behaviour from (4). To

wit, consider a risk-neutral investor in our setup, who faces the additional constraints that he

cannot borrow at the risk-free interest rate or short-sell the market portfolio.6 His optimal

strategy is to invest his entire wealth in the asset with the highest expected net return, based

on his belief about the performance of the mutual fund. In particular, he does not discriminate

between the alpha and the beta of the fund.

C. The Fund Manager’s Problem

As stated earlier, we assume that the fund manager seeks to maximise his expected income

from fees. Recall that the investor’s contribution to the mutual fund is ξ∗w, where ξ∗ is de-

termined by (4), for a given advisory fee ζ. The fund manager therefore seeks to identify the

optimal fee ζ∗ that solves the following maximization problem:

ζ∗ = arg max
ζ∈R

F (α, σε, ζ), where F (α, σε, ζ) := E
(
ξ∗w(1 + rP)ζ

)
. (5)

5Lynch and Musto (2003) make a similar point, observing that since the investor separates his exposure to
the market from his allocation to the mutual fund, the latter must be invariant with respect to the beta of the
mutual fund. In a similar vein, Huang, Wei, and Yan (2007) reason that the investor uses the market portfolio
to hedge the systematic risk of the mutual fund. Those articles appeal to such arguments to justify a simpler
modeling framework, without a market portfolio, in which the return of the mutual fund is purely idiosyncratic.
Since the current article seeks specifically to elucidate the impact of idiosyncratic risk on mutual fund fees, it is
important that we are able to distinguish explicitly between the effects of systematic and unsystematic risk in
our model. Abstracting away from systematic risk is therefore not appropriate here.

6These constraints are necessary for a risk-neutral investor to have a well-defined optimal portfolio. Without
them, he would attempt to fund an unlimited long position with an unlimited short position, unless the expected
returns of all three assets are equal.
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We obtain the following expression for the fund manager’s objective function from (4):

F (α, σε, ζ) =
1 + α+ βµM

γσ2
ε

ζ

(1− ζ)2
E
(Ä

(1− ζ)α̂− ζ
ä+)

=
1 + α+ βµM

γσ2
ε

ζ

(1− ζ)2

((
(1− ζ)α− ζ

)
Φ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å
+ (1− ζ)κσεϕ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å)
,

(6)

where Φ(·) denotes the standard normal CDF, and ϕ(·) denotes the associated PDF. The second

equality above follows from the fact that (1− ζ)α̂− ζ ∼ N
Ä
(1− ζ)α− ζ, (1− ζ)2κ2σ2

ε

ä
, together

with the expression for the mean of a truncated normal random variable (see e.g. Johnson,

Kotz, and Balakrishnan 1994).

Since rP is normally distributed in our setup, it follows that P(rP < −1) > 0. In other

words, an investment in the mutual fund could become an end-of-period liability. To reduce the

likelihood of such an outcome, we make the following benign assumption:

Assumption 5. The fund’s before-fee return satisfies E(rP ) > −1⇒ 1 + α+ βµM > 0.

To be economically meaningful, the fee imposed by the fund manager should be a fraction of

its end-of-period assets under management that is both positive and less than one. Assumption 5

ensures that these constraints are endogenous to the formulation of the fund manager’s problem

(5):

Lemma 6. The optimal fee ζ∗ satisfies 0 < ζ∗ < 1.

The first-order condition for the optimal fee charged by the fund manager is obtained by

differentiating his objective function (6), to get

∂F

∂ζ
(α, σε, ζ) =

1 + α+ βµM

γσ2
ε

1

(1− ζ)3
G(α, σε, ζ),

where

G(α, σε, ζ) :=
(
(1− ζ)α− 2ζ

)
Φ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å
+ (1− ζ)κσεϕ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å
. (7)

The optimal fee ζ∗ is thus characterized as the solution for the equation G(α, σε, ζ∗) = 0. Since

β does not appear in (7), it follows that the optimal fee charged by the manager of the mutual

fund is independent of its level of systematic risk:

Corollary 7. The optimal fee ζ∗ is invariant with respect to β.
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Corollary 7 is a direct consequence of the separation of alpha and beta in (4), which, in

turn, follows from the risk-aversion of the investor in our model. Testing the cross-sectional

dependence of the advisory fees on systematic risk could therefore provide empirical evidence

on the risk-aversion of mutual fund investors.

D. The Relationship Between the Optimal Fee and Idiosyncratic Volatility

To establish the dependence of the optimal advisory fee on the idiosyncratic volatility of the

mutual fund in our model, we first refine the bounds in Lemma 6:

Lemma 8. The optimal fee ζ∗ admits the following bounds:

α+

2 + α+
< ζ∗ <

α ∧ α
2 + κσε

ϕ

(
α∧α2
κσε

)
Φ

(
α∧α2
κσε

)
1 + α ∧ α

2 + κσε
ϕ

(
α∧α2
κσε

)
Φ

(
α∧α2
κσε

)
, (8)

where x ∧ y ≡ min{x, y} denotes the minimum of x and y. In particular, ζ∗|σε=0+ = α+

2+α+ .

Observe that Lemma 8 is consistent with Lemma 6. In particular, the lower bound in (8) is

clearly non-negative, while the upper bound is less than one, by virtue of Lemma A.2.7 Next,

an analysis of the equation G(α, σε, ζ∗) = 0 reveals the sensitivity of the optimal fee to the

idiosyncratic volatility of the mutual fund:

Theorem 9. The optimal fee ζ∗ satisfies

∂ζ∗
∂σε

=
(1− ζ∗)

Ä
2ζ∗ − (1− ζ∗)α

äÄ
(1− ζ∗)ζ∗α− ζ2

∗ + (1− ζ∗)2κ2σ2
ε

ä
σε
Ä
(1− ζ∗)ζ∗α− 2ζ2

∗ + 2(1− ζ∗)2κ2σ2
ε

ä . (9)

In particular, ∂ζ∗
∂σε

> 0.

Theorem 9 leads to the remarkable conclusion that funds with higher idiosyncratic volatilities

charge higher fees. To gain an economic insight into this result, note that a higher idiosyncratic

volatility on the part of the mutual fund makes the investor more likely to overestimate or un-

derestimate its performance substantially. Observe also that the fraction of wealth the investor

7Simply note that the first inequality in (A.9) implies that

α ∧ α
2

+ κσε
ϕ
Ä
α∧α

2
κσε

ä
Φ
Ä
α∧α

2
κσε

ä > 0,

and the desired conclusion follows.
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allocates to the fund exhibits a positive convex dependence on his estimate for the value of its

before-fee alpha, as is evident from (4). The convexity results in a higher equilibrium fee as

the investor’s uncertainty about the fund’s performance increases, due to an increase in its id-

iosyncratic volatility. This observation is reminiscent of the well-known phenomenon in option

pricing, where the price of a contract with a convex payoff is monotonically increasing with

respect to the volatility of the underlying asset. Indeed, it is fruitful to view the optimal fee in

our setting as a contingent claim on the investor’s estimate of the fund’s before-fee alpha, with

the idiosyncratic volatility of the fund playing the role of asset price volatility in traditional

option pricing.

It is also instructive to interpret Theorem 9 in the light of Miller (1977), who argued that the

combination of restrictions on short-selling and divergences of opinion among investors inflate

the prices of risky securities. Moreover, since the opinions of investors are more divergent in the

face of greater uncertainty about future returns, Miller (1977) predicted a positive relationship

between security prices and uncertainty, in the presence of short-sale constraints. Our model

is amenable to this analysis, by dint of the fact that the mutual fund cannot be sold short.

In particular, a higher level of idiosyncratic risk increases the investor’s uncertainty about the

before-fee alpha of the fund, making him more likely to overestimate or underestimate its value

substantially. In the former case he will be willing to pay a higher fee to invest in the fund,

while his inability to short-sell the fund prevents him from exerting downward pressure on the

fee in the latter case. The overall effect is that a higher fee can be sustained in equilibrium.

Theorem 4.1 in Hugonnier and Kaniel (2010) offers some parallels to Theorem 9, although

the economic mechanism is quite different. In their model, a higher fee results in a smaller

allocation to the fund by the investor. This provokes greater risk-taking by the fund manager,

in order to increase the likelihood of a substantial return, as compensation for the adverse

impact of a smaller investment on the fund’s assets.

By interpreting Theorem 9 to mean that the optimal fee charged by the fund manager

is monotonically increasing in the investor’s uncertainty about his performance, we obtain a

similar result Corollary 1 in Cheng, Massa, and Zhang (2013). In the context of a simple

model, in which two types of investors observe different facets of managerial skills, they show

that a fund manager will charge a fee equal to his before-fee performance if the investors agree

about his skill, while the fee will exceed his before-fee performance if they disagree. The search

costs associated with the investment strategies of mutual fund managers are the catalyst for

such disagreements.

Fama and French (2010) recently argued that active investment returns should be subject
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to a conservation principle, referred to as “equilibrium accounting,” according to which the

aggregate before-fee alpha achieved by active investors should be zero. They arrived at this

conclusion by arguing that the before-fee alphas of individual passive portfolios (including the

market portfolio) should each be zero, since passive investment strategies should not yield

abnormal expected returns relative to passive benchmarks. Active investors must therefore be

consigned to a zero-sum game, with some winners and some losers, but where the before-fee

alpha is zero in aggregate.

The reasoning above suggests that we should pay special attention to the situation when

the before-fee alpha of the mutual fund in our model is zero. In that case, Theorem 9 indicates

that the optimal fee ζ∗ satisfies
∂ζ∗
∂σε

=
(1− ζ∗)ζ∗

σε
. (10)

In particular, it is concave with respect to the idiosyncratic volatility of the fund:

Proposition 10. Suppose α = 0. Then the optimal fee ζ∗ satisfies ∂2ζ∗
∂σ2
ε
< 0.

When α is non-zero, numerical experiments (see e.g. Figure 3) reveal that ζ∗ is initially

convex with respect to σε, but concave thereafter. Concavity does, however, appear to be the

dominant overall feature of the shape of the relationship.

Another useful feature of (10) is its separability. This allows us to compute the optimal fee

explicitly, by direct integration:

Proposition 11. Suppose α = 0. Then the optimal fee ζ∗ is given by

ζ∗ =
kσε

1 + kσε
, (11)

where the constant k > 0 is determined by the equation

k

κ
Φ

Ç
k

κ

å
+

1

2
ϕ

Ç
k

κ

å
=
k

κ
.

In particular, k ≈ 0.6120κ.

Figure 2 uses the parameter values α = 0 and κ = 0.5 to plot ζ∗ as a function of σε. This value

of κ was inferred from the empirical data described in Section III, by computing the average ratio

of the standard errors of the estimated before-fee alphas of the funds in our sample to their gross

idiosyncratic volatilities (see Assumption 1). Figure 2 (a) illustrates the relationship between

the optimal fee ζ∗ and the bounds obtained by Lemma 8, while Figure 2 (b) compares the

optimal fee ζ∗ with observed fees. The correspondence between the theoretical fee-idiosyncratic
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risk relationship arising from our model, and the observed relationship, is impressive. Note that

the concavity of the relationship appears to be a more pronounced feature of the data than it

is for the model.

** INSERT FIGURE 2 HERE **

E. The Relationship Between the Optimal Fee and Performance

The next theorem reveals that the optimal fee is monotonically increasing with respect to

the before-fee alpha of the mutual fund. We also observe that the fund manager passes at least

some part of any increase in performance on to the investor, rather than adjusting the fee to

consume it entirely:

Theorem 12. The optimal fee ζ∗ satisfies

∂ζ∗
∂α

= (1− ζ∗)2

Ä
(1− ζ∗)α− 2ζ∗

ä
ζ∗ + (1− ζ∗)2κ2σ2

εÄ
(1− ζ∗)α− 2ζ∗

ä
ζ∗ + 2(1− ζ∗)2κ2σ2

ε

.

In particular, 0 < ∂ζ∗
∂α < (1− ζ∗)2 < 1.

Theorem 12 emphasizes the differences between our model and other theoretical models for

mutual fund fees. For example, in the model developed by Gil-Bazo and Ruiz-Verdú (2008),

poorer-performing funds charge higher fees than their better-performing counterparts, due to

the presence of unsophisticated investors. Similarly, the information costs borne by the fund

manager in the Cheng, Massa, and Zhang (2013) model can cause a decrease in the before-fee

alpha of the fund to coincide with an increase in its fee.

Note that the inequality ∂ζ∗
∂α < (1− ζ∗) suggests that the optimal fee becomes less sensitive

to the performance of the mutual fund as its idiosyncratic volatility increases, since the fee is

monotonically increasing with respect to idiosyncratic volatility (see Figure 3 for visual confir-

mation). As we shall see in Section I.G, a similar observation applies to the flow-performance

sensitivity as idiosyncratic volatility increases.

F. The Relationship Between the Optimal Fee and Investor Expertise

Mathematically, the investor expertise parameter κ and the before-fee idiosyncratic volatility

σε of the mutual fund exert exactly the same influence on the optimal advisory fee. To appreciate

this, simply observe that those two parameters always appear in tandem in (7), as the product

κσε. Consequently, the results concerning the dependence of the optimal fee on the idiosyncratic

volatility of the fund also pertain to the relationship between the fee and the expertise of the
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investor. Hence, Theorem 9 indicates that a more sophisticated investor will pay a lower fee

(all else being equal), while it follows from the limiting case in Lemma 8 that an omniscient

investor will pay ζ∗|κ=0+ = α+

2+α+ . Since such an investor experiences no uncertainty about the

fund’s performance, the optimal fee is invariant with respect to its idiosyncratic volatility.

Figure 3 plots ζ∗ as a function of α and σε, for κ = 0, 0.5, 1, 1.5. As expected, lower levels of

investor expertise correspond with higher fees, for the same values of the remaining parameters.

The monotonically increasing relationship between the optimal fee and the idiosyncratic volatil-

ity of the mutual fund, as well as the monotonically increasing dependence of the optimal fee on

the fund’s before-fee alpha, are also clearly evident. In addition, we note that Figure 3 provides

a striking illustration of our interpretation of the optimal fee as an option on the investor’s

estimate of the fund’s performance.

** INSERT FIGURE 3 HERE **

The bold curves in Figure 3 indicate where ζ∗ = α. Along those curves the optimal fee

equals the before-fee alpha of the mutual fund, implying that its after-fee performance is zero.

To their left (i.e. for lower values of α and higher values of σε), the after-fee performance of the

fund is negative, while to their right (i.e. for higher values of α and lower values of σε), it is

positive. With this in mind, Figure 3 reveals that investors with more expertise obtain positive

after-fee alphas at lower levels of before-fee alpha and higher levels of idiosyncratic volatility

than less expert investors.

Observe that the after-fee alpha of the mutual fund can be positive or negative in the

equilibrium solution for our model. By contrast, competition between investors in Berk and

Green’s (2004) model causes after-fee alphas to be zero, in equilibrium. Similarly, after-fee

alphas cannot be positive in Cheng, Massa, and Zhang’s (2013) model.

G. The Relationship Between the Investor’s Allocation and Idiosyncratic Volatility

Given an advisory fee is ζ, (4) allows us to determine the investor’s expected dollar allocation

to the mutual fund:

ω := E(ξ∗w) =
1

γ(1− ζ)2σ2
ε

E
(Ä

(1− ζ)α̂− ζ
ä+)

=
1

γ(1− ζ)2σ2
ε

((
(1− ζ)α− ζ

)
Φ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å
+ (1− ζ)κσεϕ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å)
=

1

γ(1− ζ)2σ2
ε

(
G(α, σε, ζ) + ζΦ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å)
.
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In equilibrium, when the fund manager charges the optimal fee ζ∗, this simplifies to

ω∗ = ω|ζ=ζ∗ =
ζ∗

γ(1− ζ∗)2σ2
ε

Φ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
, (12)

by virtue of the identity G(α, σε, ζ∗) = 0.

It is natural to interpret ω∗ as the equilibrium expected investment flow into the fund.

Unsurprisingly, a better gross performance yields a larger expected flow:

Theorem 13. The expected flow ω∗ satisfies

∂ω∗
∂α

=
ζ∗

γ(1− ζ∗)σ2
ε

1+ζ∗
ζ∗

(1− ζ∗)2κ2σ2
ε +
Ä
(1− ζ∗)α− 2ζ∗

ä
2(1− ζ∗)2κ2σ2

ε +
Ä
(1− ζ∗)α− 2ζ∗

ä Φ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
.

In particular, ∂ω∗
∂α > (1− ζ∗)ω∗ > 0.

Figure 4 plots the equilibrium expected flow ω∗, and the equilibrium expected flow-performance

sensitivity ∂ω∗
∂α , as functions of the before-fee alpha α and the gross idiosyncratic volatility σε of

the fund. We observe that our model captures the convexity of the flow-performance relation-

ship identified empirically by Ippolito (1992), and Sirri and Tufano (1998).8 This relationship

is generally regarded as an exogenous feature of the interaction between mutual funds and their

investors, and is typically interpreted as evidence that investors contribute enthusiastically to

funds that have performed well, but hesitate to withdraw their investments from funds that

have performed poorly. By contrast, a convex flow-performance relationship is endogenous to

our model, and requires no assumption that investors respond asymmetrically to good and bad

performance.

** INSERT FIGURE 4 HERE **

Several studies have investigated whether the convexity of the flow-performance relationship

acts as an inducement for fund managers to manipulate investment flows by adjusting the risk

levels of their portfolios in response to prior performance. For example, Brown, Harlow, and

Starks (1996), and ? presented evidence in support of the so-called “tournament hypothesis,”

according to which interim loser funds increase their risk levels relative to interim winners,

towards the end of the year, in response to the shape of the flow-performance relationship.

8There are two important differences between the the flow-performance relationship in our model and its
empirical specification. First, flows are expressed as fractions of assets under management in empirical studies,
whereas ω∗ measures the expected dollar inflow of investment in the fund. Second, empirical studies of the flow-
performance relationship equate performance with prior return, whereas the performance of the mutual fund in
our model its true before-fee alpha. Nevertheless, the theoretical insights offered by our model are applicable to
the empirical flow-performance relationship.
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However, their results were subsequently disputed on methodological grounds by ?, and ?. In

another prominent empirical study, Chevalier and Ellison (1997) estimated the shape of the flow-

performance relationship, and used it to infer the risk-taking incentives of fund managers. They

found that small funds, in particular, tend to change their risk levels relative to a benchmark,

in line with these incentives. Finally, the results of ? indicate a tendency for mutual funds to

increase their tracking error volatilities as their relative performance declines.

Although the level of risk of the mutual fund is exogenous in our model, Figure 4(a) offers

some insight into the fund manager’s risk-taking incentives. First, since the investor’s allocation

to the fund is independent of its systematic risk, it follows that any strategic risk-taking by the

fund manager will be limited to its idiosyncratic risk. Our model is thus more consistent with

the results of Chevalier and Ellison (1997), and ? than it is with the results of Brown, Harlow,

and Starks (1996), and ?.

II. A Simulated Mutual Fund Market

In this section we conduct a Monte Carlo experiment to investigate how the stylized features

of the optimal fee charged by the mutual fund manager in our model express themselves in

empirical data. In practice, we observe noisy estimates for the expected risk-adjusted returns

of mutual funds, and the source of that noise is idiosyncratic risk, which also drives fees in our

model. This raises the possibility of an interaction between the fees charged by mutual funds

and the estimation errors associated with their alphas, with potentially unwelcome consequences

for cross-sectional regressions.

A. The Simulation Framework

We begin by generating a cross-section of 10,000 mutual funds, whose true (but unobserv-

able) gross alphas are i.i.d. realizations of a normal random variable αi ∼ N (0, σ2
α). Their

gross idiosyncratic volatilities are modelled as i.i.d. realizations of an independent log-normal

random variable σεi ∼ lnN (−4.2263, 0.5532). The independence of these distributions implies

that managerial skills are unrelated to idiosyncratic risk.

The assumption that the gross alphas have a mean of zero is consistent with the equilibrium

accounting hypothesis of Fama and French (2010), while the standard deviation σα > 0 of the

gross alpha distribution measures the cross-sectional dispersion of risk-adjusted performance.

The parameters for the distribution of gross idiosyncratic volatilities were obtained by maximum

likelihood estimation, using the empirical data described in Section III.B (see Figure 5). The

resulting distribution has a mean of 1.70% and a standard deviation of 1.02%, matching the
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statistics reported in Section III.A.3.

** INSERT FIGURE 5 HERE **

Next, we solve the equation G(αi, σεi , ζi) = 0 numerically, for each fund in the sample, to

determine its fee ζi. We then generate a time-series of 30 annual gross returns for each fund,

according to the model ri,t = αi + εi,t, by sampling its i.i.d. residuals εi,t ∼ N (0, σ2
εi). The

corresponding net returns are thus ri,t − ζi. The final step is to compute the estimates α̂i and

σ̂εi for the gross alphas and the gross idiosyncratic volatilities of the funds in the sample from

their time-series data. The estimates for the net alphas of are thus α̂i − ζi.

B. An Informal Analaysis of the Fee-Performance Relationship

In this subsection we consider the situation when σα = 0, in which case all fund managers

are (equally) unskilled. This scenario is computationally convenient, since fees are easily de-

termined by evaluating (11). It is also important, since it allows us to identify the impact of

heterogeneous idiosyncratic risk-taking on the observed fee-performance relationship, without

having to disentangle the effects of performance heterogeneity.

The solid curves in Figure 1 illustrate the results of a typical simulation, using the investor

expertise parameter κ = 0.5. We are immediately struck by the dramatic U-shape in Figure 1(a).

It can be attributed to the influence of idiosyncratic risk in two distinct ways. First, since the

standard errors of estimated alphas are proportional to idiosyncratic volatilities, the funds with

the highest idiosyncratic volatilities tend to exhibit the most extreme estimated gross alphas.

In other words, the tails of the estimated gross alpha distribution tend to be populated by

the funds with the highest levels of idiosyncratic risk, as illustrated by Figure 1(d). Second,

since the fees are generated by our model, they naturally exhibit a positive dependence on

idiosyncratic volatilities, as seen in Figure 1(c). By combining these two observations, we see

that the funds with the highest fees tend to exhibit the most extreme estimated gross alphas.

Since the true gross alphas are all zero in the scenario under consideration, it follows that the

interaction between idiosyncratic volatilities and estimated gross alphas, depicted in Figure 1(d),

is merely statistical noise generated by the impact of idiosyncratic volatilities on estimation

errors.9 This noise is amplified by the dependence of fees on idiosyncratic risk, to produce the

U-shaped dependence of fees on estimated gross alphas in Figure 1(a). That relationship is

obviously spurious, as well.

9In fact, interactions between idiosyncratic volatilities and estimated gross alphas are spurious in all simula-
tions, since gross alphas and idiosyncratic volatilities are sampled from independent distributions.
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By contrast, the observable skewness in Figure 1(b) is indicative of an authentic dependence

of fees on true net alphas, which is again attributable to the fact that fees are monotonically

increasing in idiosyncratic risk. In detail, since all funds have true gross alphas of zero in

the scenario under consideration, their true net alphas are simply the negative values of their

fees, whence funds with higher levels of idiosyncratic risk have higher fees and lower true net

alphas. This also explains the skewness of the relationship between idiosyncratic volatilities and

estimated net alphas in Figure 1(e).

The dotted curves in Figure 1 present an analogous picture to the solid curves, for the

empirical data described in Section III.B. Once again, the extent to which our model replicates

the stylized features of real mutual fund data is remarkable. In fact, even the numerical values

in the two sets of figures are comparable. The most noticeable difference is that the empirical

relationship between fees and estimated net alphas in Figure 1(e) is quite symmetric, whereas

the corresponding relationship for the simulated data is significantly skewed. To explain this

difference, recall that higher idiosyncratic volatilities induce larger standard errors in estimated

net alphas, while simultaneously increasing fees. The former effect is responsible for the U-

shape of the relationship between estimated gross idiosyncratic volatilities and estimated net

alphas, while the latter effect expresses itself as a negative trend in that relationship. Since

estimated gross idiosyncratic volatilities range between 0% and 10%, for both the empirical

data and the simulated data, the impact of idiosyncratic risk on the estimation errors of net

alphas is similar in both cases. However, empirical management fees lie between 0.6% and 1.5%,

while (11) produces fees between 0% and 3%, for the range of idiosyncratic volatilities above

(see Figure 2(a)). In other words, the larger variability of fees in the simulated data induces

a stronger negative trend in the relationship between estimated gross idiosyncratic volatilities

and estimated net alphas than is witnessed for the empirical data.

The U-shaped dependence of estimated gross idiosyncratic volatilities on estimated gross

alphas, illustrated by the solid curve in Figure 1(d), persists if we increase the value of σα,

although it flattens out and becomes less regular. When σα ≈ 1.5%, it ceases to be distinguish-

able. At that point, the cross-sectional variation in true alphas dominates the cross-sectional

variation in idiosyncratic volatilities (recall that gross idiosyncratic volatilities are drawn from

a distribution with a standard deviation of 1.02%). The distribution of the estimated alphas

of the funds in a sample then begins to reflect the distribution of their true alphas, rather

than by the distribution of their idiosyncratic volatilities. Since fees in our model are positively

related to true gross alphas, this results in a monotonically increasing dependence of fees on

estimated (gross and net) alphas, rather than the relationships depicted by the solid curves in
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Figures 1(a)–(b).

The previous discussion suggests that the ratio of the standard deviation of true gross alphas

to the standard deviation of gross idiosyncratic volatilities may be interpreted as a type of cross-

sectional signal-to-noise ratio. A larger value decreases the importance of the cross-sectional

interaction between idiosyncratic volatilities and the standard errors of estimated alphas. It

also decreases the cross-sectional variation in fees relative to the variation in true alphas. As a

result, the U-shaped dependence of idiosyncratic volatilities on estimated alphas dissipates, and

the relationship between fees and estimated alphas begins to reflect the true fee-performance

relationship. The solid curves in Figure 1 represent the worst-case scenario, when the signal-

to-noise ratio is zero.

The analysis above sheds new light on some empirical results in the mutual fund literature.

For example, the U-shaped dependence of fees on estimated net performance, illustrated by

Figure 1(b), is discernible in the tables presented by Gruber (1996), and Carhart (1997). More

recently, ? developed a theoretical model in which a U-shaped relationship between the relative

risk adopted by fund managers and their prior performance results from the interplay of com-

pensation structure incentives and career concerns. Naturally, they interpreted the empirical

evidence for this relationship as confirmation of their model. However, our account of the U-

shape in Figure 1(e) offers a more parsimonious explanation. In particular, we suggest that the

U-shaped relationship between relative risk and prior performance identified by ? is simply a

manifestation of the noisy interaction between idiosyncratic volatilities and the standard errors

of estimated alphas.

C. A Formal Analysis of the Fee-Performance Relationship

To understand how our theoretical model expresses itself in cross-sectional regressions of fees

against (gross and net) performance, we use data from the Monte Carlo simulations described

earlier to estimate the following models:

ζi = a1 + b1α̂i + c1σ̂εi + d1

»
σ̂εi + e1α̂iσ̂εi + υ1,i, (13a)

and

ζi = a2 + b2(α̂i − ζi) + c2σ̂εi + d2

»
σ̂εi + e2(α̂i − ζi)σ̂εi + υ2,i. (13b)

Table I presents the results of fitting (13) to the data generated by three simulations, with

σα = 0, σα = 0.0025, and σα = 0.005. We immediately observe that the positive concave

dependence of fees on idiosyncratic volatilities is an unambiguous and statistically significant
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feature of the simulated data. Of course, this reflects the properties our model, which was used

to generate the data. We also observe a dramatic increase in the R2 statistic when estimated

gross idiosyncratic volatility is added as an independent variable, indicating that idiosyncratic

risk is far more important for describing fees in the simulated data than performance. This is

not surprising, since the variability of performance is very small relative to the variability of

idiosyncratic risk, in all three simulations.

** INSERT TABLE I HERE **

According to Panel A, the dependence of fees on estimated gross alphas is never significantly

negative, even without controlling for the effect of idiosyncratic risk. Moreover, it becomes

progressively stronger as the dispersion of performance increases, and is significantly positive

when σα = 0.0025 or σα = 0.005. In other words, the positive relationship between fees and

gross performance, which is inherent in our model, becomes more visible as the heterogeneity

of managerial skills increases. Including the dependence of fees on estimated gross idiosyncratic

volatilities, as well as their interactions with estimated gross alphas, further strengthens the

relationship between fees and estimated gross alphas.

By contrast, Panel B reveals that the dependence of fees on estimated net alphas is always

significantly negative when the effect of idiosyncratic risk is not taken into account. However,

the inclusion of estimated gross idiosyncratic volatilities, and their interactions with estimated

net alphas, changes things dramatically, and even produces significant positive relationships

when σα = 0.0025 and σα = 0.005.

** INSERT TABLE II HERE **

The significant negative correlations between estimated net alphas and estimated gross id-

iosyncratic volatilities reported in Table II identify the negative dependence of fees on estimated

net alphas in Panel B of Table I as the manifestation of an omitted variable bias. It arises from

the fact that true net alphas—being true gross alphas less fees—are negatively correlated with

idiosyncratic volatilities, due to the positive dependence of fees on idiosyncratic risk in our

model. Consequently, regressing fees against estimated net alphas, without controlling for the

impact of idiosyncratic risk, creates the false impression of a significant negative relationship

between those variables, when that relationship is non-negative (and sometimes significantly

positive) in a properly specified regression.

By contrast, the negligible correlations between estimated gross alphas and estimated gross

idiosyncratic volatilities reported in Table II indicate that the relationship between fees and
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estimated gross alphas is not affected by an omitted variable problem. This is supported by the

fact that the dependence of fees on estimated gross alphas does not change appreciably with the

addition of idiosyncratic volatility as an independent variable, as seen in Panel A of Table I. Of

course, the inclusion of idiosyncratic risk, and its interaction with gross performance, improves

the quality the regressions there considerably, but not because of an omitted variable bias.

III. Hypotheses, Data and Empirical Methodology

In this section we formulate a number of hypotheses arising from the analysis of the theo-

retical model in Section I, and from the Monte Carlo experiment in Section II, and we briefly

describe the data used to test those predictions in Section IV. In addition, we specify the

regression models employed in Section IV, and we present the summary statistics for our data.

A. Empirically Testable Hypotheses

According to Theorem ?? and Proposition ??, the optimal fee charged by the mutual fund

manager in our model is monotonically increasing and concave in the gross idiosyncratic volatil-

ity of the fund. These features are captured by Columns (i) and (ii) in all the panels of Table I,

for simulated data, while Figure ?? suggests that the concavity of fees with respect to idiosyn-

cratic risk is stronger in the empirical data than in our model:

Hypothesis 1. Fees exhibit a positive concave dependence on idiosyncratic volatility.

Theorem ?? demonstrates that the investor’s allocation to the mutual fund is independent

of its level of systematic risk, implying that the optimal fee charged by the fund manager is

invariant with respect to the fund’s exposure to the market portfolio. The same conclusion

follows from the absence of the beta of the mutual fund in (7):

Hypothesis 2. Fees are independent of market risk.

According to Column (i) of Panels B.1–B.3 in Table I, the fees charged by mutual funds

appear to exhibit a negative dependence on their net alphas, in cross-sectional regressions that

exclude idiosyncratic volatility as an explanatory variable. However, the inclusion of estimated

gross idiosyncratic volatilities in those regressions eliminates this negative relationship. The

strong dependence of fees on idiosyncratic risk, together with the significantly negative correla-

tions in Table II, diagnose an omitted variable bias in the original regressions:

Hypothesis 3. Fees exhibit a spurious negative dependence on net alphas, due to the omission

of idiosyncratic volatility as an explanatory variable.
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Proposition ?? demonstrates that the optimal fee charged by the fund manager in our model

is a monotonically increasing function of the gross performance of the fund. This is evident in

the first columns of Panels A.1–A.3 in Table I, where we see that fees are positively related to

estimated gross alphas, even before we control for the effect of idiosyncratic risk:

Hypothesis 4. Fees exhibit a non-negative dependence on gross alphas, even without control-

ling for the effect of idiosyncratic risk.

Note that since our model is concerned specifically with managerial fees, the hypotheses

above should be interpreted in that light. Nevertheless, for the sake of completeness, we report

results for both managerial fees and expense ratios in Section IV.

B. Data

Our data was obtained from the Center for Research in Security Prices (CRSP) Survivor-

Bias-Free U.S. Mutual Fund Database, for the period from January 1990 to December 2007.

Since the subjects of our study are actively-managed diversified U.S. equity mutual funds,

we began by excluding all fixed-income funds, money-market funds, international funds, and

specialized sector funds from our initial sample. It was then reduced further, through the

exclusion of all index funds and institutional funds. To obtain our sample of diversified domestic

equity mutual funds, we use the information on fund policy codes and that provided by different

classifications of funds by investment objective. In the Internet Appendix, we provide a more

detailed account of the steps followed to construct our final sample, as well as the descriptive

statistics of the main variables.

The availability of multiple share classes, with different fee schedules, offers investors a

range of alternatives for investing in a given fund. Since mutual funds compete in each share

class, classifying funds by their share classes is an essential ingredient for analyzing the fee-

performance relationship. Moreover, in order to capture the effect of the structure of the

mutual fund industry, we first grouped the funds into families using the management company

codes provided by CRSP, after which we manually checked the dataset to expand the number

of missing codes for each unique management company name.10

In order for a fund to have been included in our sample, it must have reported on its total

net assets under management and on its returns. We also considered only those funds with at

least one year’s worth of reported returns. In line with established practice, the monthly growth

10This procedure increased the number of unique company codes by 15.77%, when compared with those
available in CRSP, and increased fund coverage by 13.16%.
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rates in net flows for the funds in our sample were calculated as follows:

TNAi,t − TNAi,t−1(1 +Ri,t)−Mi,t

TNAi,t−1
,

where TNAi,t denotes the total net assets of fund i in month t, Ri,t denotes the after-fee return

reported by that fund in the same month, and Mi,t represents the aggregate total net assets of

all dead funds that were merged into it during the month in question.11

Mutual fund fees are reported as annual operating expenses, even though they are accrued

on a daily basis, in practice. By convention, the annual operating expenses of any given fund

during any particular year are expressed as a percentage of the average of its total assets

under management during that year. The major components of annual mutual fund operating

expenses are management fees and 12b-1 fees, which are marketing and distribution costs. Since

management fees are not available in CRSP before 1999, we estimate management fees as total

operating expenses net of 12b-1 fees. For robustness, we repeat our analysis using the actual

management fees provided by CRSP over the period 1999 to 2007.

C. Empirical Methodology

We use a number of models to estimate the (before-fee and after-fee) expected risk-adjusted

returns of the funds in our sample. These include the CAPM, the three-factor model of Fama

and French (1993), and the four-factor model of Carhart (1997). We find that these models

yield qualitatively similar results, whence our tables focus on the results of the Carhart (1997)

model, as the chosen representative.12 However, we occasionally report results for some of the

other models in the paper to demonstrate robustness.

The month t return on fund i, in excess of the monthly T-Bill rate, is modeled as follows by

Carhart (1997):

ri,t = αi + βiRMRFt + γiSMBt + ζiHMLt + ηiPR1YRt + εi,t, (14)

where RMRFt is the month t excess return on a value-weighted market proxy, and SMBt, HMLt,

and PR1YRt are the month t returns on value-weighted zero-investment factor-mimicking port-

folios for size, book-to-market equity, and one-year momentum, respectively. Following Carhart

(1997), we employ overlapping three-year estimation periods. If fewer than three years of previ-

ous data are available for a specific fund in a given estimation month, then we require it to have

11The average (median) growth rate in net flows is about 16% (4.8%), and the first (ninety-ninth) percentile
is -57% (232%).

12The results obtained for the other models are reported in our Supplementary Appendix.
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at least 30 months of available observations, for it to be included in the estimation. To cater

for the possibility that the sensitivity of fees to past performance is contingent on performance

levels, we introduce the dummy variables DMPERF and DHPERF, which indicate whether or

not a given fund belongs to the middle tercile or the top tercile, respectively, of the performance

distribution.

The variable IDVOL, defined as the standard deviation of 36 monthly residuals with respect

to the Carhart (1997) model, is the chosen proxy for idiosyncratic volatility. To examine the

relationships between fees, performance, and idiosyncratic risk, for mutual funds, we pool the

time-series and cross-sectional data and use Fama and MacBeth (1973) estimations. Since the

timing of fee changes is crucial for our analysys, we use the actual date ranges for the fee data

of each fund, rather than assuming that fees are set regularly on certain dates. We also use

a fixed-effect approach, with year-dummies, to ensure that estimated coefficients capture the

cross-sectional relationships between the variables, without possible distortions induced by the

correlations between the residuals of different funds. All regressions include untabulated dummy

variables for investment objectives and fund share classes in the regressions. To control for the

small-fund effect, we include the dummy variable SMLFND, which indicates whether or not the

assets of a given fund exceed $5 million (see Fama and French (2010)). The standard errors of

coefficient estimates are determined by the Newey and West (1987) methodology, to account

for the effects of heteroskedasticity and autocorrelation in the sample data. Moreover, since the

OLS regression assumption of independent residuals is often violated in panel data (particularly

in mutual fund panels), we report standard errors for estimated coefficients that are clustered

by fund, by time, and by fund-and-time (see Petersen (2009)).

IV. An Empirical Investigation of Mutual Fund Fees

This section is devoted to an empirical analysis of mutual fund fees, with an emphasis on the

predictions in Section III.A. Our focus reflects the fact that the model in Section I is explicitly

concerned with management fees. Nevertheless, for completeness, we test our predictions against

both management fees and expense ratios.

A. The Determinants of Management Fees

We examine the nature of the relationship between management fees and idiosyncratic

volatility, while controlling for other fund characteristics that are known to affect fees. This is

done by constructing several contingency tables based on quintile portfolios formed on IDVOL

and each of the following fund characteristics: the logarithm of fund TNA (FNDSIZE); the
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logarithm of fund family TNA (FAMSIZE); portfolio turnover (TRNOVR); and the logarithm

of fund age (FNDAGE). The result is a cross-tabulation of 25 quintile portfolios. For each, we

calculate the average management fee charged by its constituent funds in the following year.

Panels A and B in Table III condition the quintile portfolios of idiosyncratic volatility on

FNDSIZE and FAMSIZE. As funds grow, we observe that economies of scale and scope are

realized, due to the decreasing costs of transactions processing and investor service provision,

as fractions of assets under management. This cost reduction is economically and statistically

relevant, and varies between 30 and 60 basis points, depending on the level of IDVOL. However,

after controlling for fund TNA and family TNA, IDVOL continues to explain the cross-sectional

variation in management fees. This suggests that the idiosyncratic volatility of mutual funds

captures more than the decreasing marginal compensation rates in the sizes of funds and families.

** INSERT TABLE III HERE **

In Panel C we average the management fees across portfolios separated by both IDVOL

and portfolio turnover (TRNOVR). Chalmers, Edelen, and Kadlec (1999) found that portfolio

turnover constitutes the largest portion of total trading costs of mutual funds. If fund managers

are overconfident about their ability to outperform the market, they could trade too much

(Barber and Odean (2001)). This increases not only the extent of portfolio rebalancing, but also

trading costs. If these costs translate into cross-sectionally higher management fees, we might

witness a positive and significant relationship between fees and TRNOVR, even after controlling

for IDVOL. The evidence in Panel C suggests that funds with higher levels of turnover seem to

demand higher levels of compensation, within each quintile portfolio of idiosyncratic volatility.

Similarly, for each quintile portfolio of fund portfolio turnover, the differences in management

fees between high and low idiosyncratic volatility portfolios are significantly stable at around

40 basis points.

Finally, in Panel D we control for the relationship between fund age and management fees.

The literature is unclear about this relationship. One could argue that young funds incur high

incubation costs. On the other hand, if such funds also belong to large families, their start-

up cost could be subsidized by the family to boost their performance, with the intention of

attracting new investments quickly (Barber, Odean, and Zheng (2005), and ?). The findings in

Panel D are consistent with those of Tufano and Sevick (1997), and suggest that fund age does

not seem to be a determining factor for management fees, since fees do not vary much across

the quintile portfolios of fund age, after unsystematic risk has been taken into account.

In summary, for the majority of mutual funds, idiosyncratic volatility appears to explain

most of the cross-sectional variation in advisory compensation. In addition, among the other
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fund characteristics, fund size and family size exhibit significant negative relationships with

management fees. By contrast, portfolio turnover is positively related to management fees.

B. A Multivariate Regression Analysis of Mutual Fund Fees

We now test our empirical predictions about the relationship between fees and idiosyncratic

volatility in a multivariate framework. The dependent variable is fees, expressed as a percentage,

and measured either as management fees (MGMT) or total operating expenses (OPEX). The

representative measure of idiosyncratic volatility (IDVOL) is the standard deviation of resid-

uals from the Carhart (1997) model, estimated over the previous 36 months. Our regression

specifications include several lagged control variables that have been shown to affect mutual

fund fees. These include the logarithm of fund TNA (FNDSIZE); the logarithm of one plus the

total family TNA (FAMSIZE); the total number of funds in a family (NFNDFAM); the loga-

rithm of fund age since inception (FNDAGE); the volatility of returns over the past 12 months

(VOL); the minimum of the aggregated purchases and sales of securities in the underlying port-

folio (TRNOVR); the intercept for the Carhart (1997) model (NPERF); and the net inflows

(FLOWS). In addition, we isolate the effect on fees of the different cost structures associated

with small funds, by using the dummy variable SMLFND, which indicates whether or not the

assets of a fund are less than $5 million (see Evans (2010), and Fama and French (2010)). Fi-

nally, we control for fund share classes and investment objective codes, since these variables are

known to be associated with pricing and product differentiation at the family level.

The results of our analysis are reported in Table IV. The dependent variable is MGMT in

Columns (i)-(viii), and OPEX in Columns (ix)-(xvi). To account for different average levels

of advisory compensation in each sample year, we pool all variables and run year-fixed effect

regressions, with standard errors clustered by fund. For robustness, we employ the Fama and

MacBeth (1973) approach to repeat the analysis in Columns (v)–(viii) and (xiii)–(xvi), with

Newey and West (1987) standard errors. The strongly significant positive dependence of MGMT

on IDVOL in Table IV is consistent with Hypothesis 1. Moreover, the positive loadings of fees

on idiosyncratic volatility are not explained by time-series variations in the dependent variable,

since they remain highly significant even after controlling for time-fixed effects.

We find that a one standard deviation increase in idiosyncratic volatility corresponds with

a 25.2 basis point increase in management fees. Since the average fund TNA of the funds in

our sample is about $860 million, this translates to about $2.2 million for a fund of average

size. We note that the economic impact of IDVOL remains virtually unchanged across different

model specifications, when we consider operating expenses (OPEX) in Columns (ix)–(xvi).
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** INSERT TABLE IV HERE **

Turning to the impact of fund and family characteristics on management fees, the evidence

presented in Table IV indicates that management fees decrease significantly with fund size

(FNDSIZE), with the estimated coefficients ranging between −0.6 and −0.76. The negative

relationship between fees and FAMSIZE or NFNDFAM suggests that economies of scope operate

at the family level, with larger families spreading the costs of investment research, managerial

expertise, and portfolio rebalancing across their member funds. In addition, by offering larger

sets of funds and investment styles, larger families could amortize the marketing and selling

efforts of their (un)affiliated brokers across many products (Tufano and Sevick (1997)).

Since high levels of idiosyncratic risk may proxy for greater portfolio rebalancing, all regres-

sion models include the variable TRNOVR. Deli (2002) offers preliminary evidence on the link

between advisory compensation and the characteristics of the underlying portfolios, by showing

that the marginal compensation rates of equity or foreign mutual funds exceed those of debt or

domestic mutual funds by about 20 basis points. He argues that these differences are indicative

of more intensive trading by equity funds and foreign funds. The positive loadings of fees on

TRNOVR in Table IV confirm that high portfolio rebalancing signals frequent trading, which

in turn demands a greater managerial effort. It is therefore unsurprising that funds that trade

intensively are more costly to manage.

We note the negative relationship between fees and performance in Table IV, whose existence

is a long-standing puzzle (see e.g. Gruber (1996), Carhart (1997), Wermers (2000), Barber,

Odean, and Zheng (2005), Kosowski, Timmermann, Wermers, and White (2006)). Gil-Bazo

and Ruiz-Verdú (2009) argue that it is a consequence of intense competition for investor flows

in the mutual fund industry, which sees competent managers attract sophisticated performance-

sensitive investors. This leaves unsophisticated investors at the mercy of under-performing fund

managers, who increase their fees to exploit the performance-insensitivity of their clientele (see

e.g. Christoffersen and Musto (2002)). We will return to this issue later, when we provide

intriguing new evidence on the fee-performance relationship.

We note that the positive relationship between fees and idiosyncratic volatility survives, even

after accounting for several fund and family characteristics. This suggests that IDVOL is indeed

an important determinant of mutual fund fees. Overall, the evidence reported in Table IV lends

strong support to Hypothesis 1, although the concavity of the relationship between fees and

idiosyncratic risk remains to be demonstrated.
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C. The Concavity of the Relationship Between Fees and Idiosyncratic Risk

Having established the positive dependence of fees on idiosyncratic volatility, we now ad-

dress the second part of Hypothesis 1, which concerns the concavity of that relationship. The

dependent variable is once again fees, expressed as a percentage. To test the shape of the re-

lationship between fees and idiosyncratic volatility, we introduce the following two variables:

the square-root of fund idiosyncratic volatility (
√
IDVOL ); and fund idiosyncratic volatility

squared (IDVOL2). If the dependence of management fees on IDVOL is indeed concave, then

a positive coefficient should attach to
√
IDVOL , and a negative coefficient should attach to

IDVOL2. Table IV reveals that this is indeed the case. In particular, we observe significant

and positive and negative coefficients of fees on
√
IDVOL and IDVOL2, respectively, after con-

trolling for other fund and family characteristics. This is precisely what we expect from the

Monte Carlo experiment in Section II. In fact, when we compare Tables I and IV, we see that

the concavity of the fee-idiosyncratic volatility relationship appears to be more pronounced in

the empirical data than in the model (the coefficients on
√
IDVOL in Table IV are larger and

generally more significant than the corresponding coefficients in Table I). This is unsurprising,

given the visual evidence in Figure ??.

The implicit assumption thus far is that advisory contracts are structured as single-rate

contracts, whose payoffs are linear in fund assets. Another possible explanation for a con-

cave relationship between fees and idiosyncratic volatility, which departs from the explanation

provided by our model, is that high idiosyncratic volatility funds could be more likely to be as-

sociated with decreasing marginal compensation rates in fund TNA (i.e. advisory rates decrease

marginally with increasing asset-based breakpoints). We can exclude this explanation, however,

for two reasons. First, Deli (2002) points out that only a small fraction (less than one third) of

advisory contracts exhibit breakpoints in fee schedules. Second, additional statistics reported

in our Supplementary Appendix indicate that idiosyncratic volatility is inversely related to fund

TNA. In other words, funds with fewer assets under management are characterized by higher

levels of idiosyncratic risk. Small funds (and funds that belong to small families) are more

likely to be granted single-rate contracts, to motivate their advisors to assume more risk (Deli

(2002)). Consequently, the effect of decreasing marginal compensation rates on our results is

most likely causing us to underestimate the positive (negative) loading of fees on
√
IDVOL

(IDVOL2), rather than the other way around. We confirm this in an unreported test, where

we demonstrate that the concavity of fees with respect to IDVOL becomes even stronger when

funds with breakpoint-based advisory contracts are excluded from the sample.
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D. The Dependence of Fees on Market Risk

In his presidential address to the American Finance Association, French (2008) quantified the

total cost of active investing (defined as the average difference between the actual standardized

cost of investing and the passive cost) to be 0.67% of the total market capitalisation each

year, for the period from 1980 to 2006. Likewise, Deli (2002) estimated the average advisory

compensation rate of active equity mutual funds to be almost 0.4% higher than the rates charged

by similar passive equity mutual funds. These results indicate that passive investments are

substantially less costly than active investments.

According to Hypothesis 2, the management fees of active mutual funds should not be

dependent on systematic market risk. This may be interpreted to mean that investors should

be unwilling to pay high active management fees for passive performance. To illustrate the

scale of the difference between active and passive management fees, the Vanguard 500 Admiral

Fund provides passive exposure to the S&P 500 index for around 96 basis points less than the

average expense ratio of active mutual funds with similar portfolio holdings.

To test Hypothesis 2, we first use the Carhart (1997) model to estimate the level systematic

risk (BETA) for mutual funds. We then determine the extent to which BETA explains manage-

ment fees, after controlling for fund and family characteristics. The results for these tests are

also reported in Table IV, where we see that the loadings of fees on BETA are both statistically

insignificant and economically irrelevant, for all regressions.

Our findings offer an explanation for the evidence provided by Golec (1992) on the lack

of any significant relationship between single-fee contracts and systematic risk in mutual fund

portfolios.13 They also provide several interesting insights into the determinants of advisory fee

contracts. First, they support our primary prediction (Hypothesis 2) that advisory compensa-

tion rates do not price the systematic component of mutual fund returns, since investors can

easily and cheaply adjust their exposures to market risk. Second, they provide some evidence

of rationality on the part of mutual fund investors, by suggesting that investors separate their

alpha and beta decisions, on the basis of cost.

It is worth noting that Hypothesis 2 follows from the fact that the investor in our model is

risk-averse. A risk-neutral investor would not separate his alpha and beta allocations, whence

the fee charged by the fund manager to a risk-neutral investor would depend on the beta of

the fund. So the results presented in this section could also be interpreted as a rejection of the

hypothesis that investors are risk-neutral.

13Interestingly, Golec (1992) demonstrates that for advisory contracts with no incentive fees, the base fee
parameter is strongly positively related to idiosyncratic volatility, but unrelated to systematic risk (see Golec
(1992), Panel II, p. 92).
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E. The Relationship Between Fees and After-Fee Performance

According to Hypothesis 3, the widely reported negative dependence of fees on after-fee

performance is the consequence of an omitted variable bias. It results from the fact that fees

and net performance (being gross performance less fees) are both dependent on idiosyncratic

volatility. This section retraces the steps in the Monte Carlo experiment in Section II, by

conducting a battery of tests to quantify the impact of idiosyncratic volatility on the fee-

performance relationship.

We pool all variables and estimate cross-sectional time-series regressions with fund- and

time-fixed effects. For robustness, we repeat this analysis using random effects, and the two-

step Fama and MacBeth (1973) estimation procedure. To capture the non-linear relationship

between fees and performance indicated in Table IV and Section II, we interact fund performance

(NPERF) with the following two dummy variables: DMPERF, which indicates whether fund

performance is in the second performance tercile; and DHPERF, which indicates whether fund

performance is in the top performance tercile. The primary independent variable of interest is

the interaction between fund performance and idiosyncratic volatility (NPERF× IDVOL).

The results of this analysis are presented in Table V. Consistent with the positive coefficient

of fees on NPERF2 in Table IV, the loading of MGMT on NPERF in Column (i) is negative

and significant (-0.465), suggesting that poorly performing funds charge higher management

fees. This relationship intensifies significantly in Columns (ii)–(iv), when we separate perfor-

mance in terciles using the dummy variables DMPERF and DHPERF. Following the evidence

in Section II, we expect that the addition of IDVOL to the regression should reduce the underes-

timation of the fee-performance sensitivity significantly. Our findings show that the interaction

variable NPERF× IDVOL not only enters negatively in all regression specifications, but that it

renders insignificant the negative coefficient of fees on NPERF. Specifically, the negative loading

(-0.465) of MGMT on NPERF in Column (i) is completely transferred to the interaction term

NPERF× IDVOL (-0.140) in Column (v), leaving a non-negative sensitivity of fees to after-fee

risk-adjusted returns. The same conclusions apply when fund total operating expenses OPEX

is the dependent variable.

** INSERT TABLE V HERE **

Overall, the findings in this section indicate that the omission of the interaction variable

NPERF × IDVOL incorrectly forces its negative and significant coefficient into the error term

of the regression, giving the false impression that the managers of funds that perform poorly

charge higher fees. Our findings cast doubt on the strategic fee-setting explanation provided
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by Gil-Bazo and Ruiz-Verdú (2009) for the negative relationship between advisory fees and

after-fee performance.

F. Advisory Fees and the Flow-Performance Relationship

To determine whether the fee-setting policies of management companies are a perverse

function of the performance-chasing behavior of investors, we estimate several proxies for the

elasticity of investor demand. Following Gil-Bazo and Ruiz-Verdú (2009), the first proxy,

S1, is the first derivative of expected net flows with respect to mutual fund performance

(∂E(FLOWSi,t | Ii,t−1)/∂NPERFi,t−1), given the lagged information set Ii,t−1 (consisting of

FNDSIZE, FAMSIZE, FNDAGE, NFNDFAM, NPERF2, NPERF× FNDAGE, TRNOVR, and

VOL). The second proxy, S2, controls for the possibility that investor sensitivity is affected by

back-end loads. Chordia (1996) shows that mutual funds charge higher back-end loads to dis-

suade investors from redeeming their shares. With a lower probability of redemptions, mutual

funds are able to invest more aggressively in risky assets. As such, S2 is computed by adding the

additional variable BKLOADS and its interaction with fund performance NPERF×BKLOADS

to the existing lagged information set Ii,t−1, previously used in the definition of S1. Since we

are not interested in separating the income accruing to the fund from that which accrues to its

brokers, BKLOADS includes both redemption fees and contingent deferred sales charges.

Our findings are reported in Table VI. The dependent variable (expressed in percentage

terms) is the fund management fee (MGMT) in Columns (i)–(viii), and the fund total operating

expenses (OPEX) in Columns (ix)–(xvi). As indicated in Table VI, the loadings of fees on the

investor sensitivity proxies S1 and S2 are negative and significant, irrespective of the fee that

is used as the dependent variable. This negative relationship has been interpreted as direct

evidence that fund managers exploit the performance insensitivity of unsophisticated investors

to maximize their income from asset-based fees. However, that argument does not consider

the possibility that mutual fund investors may be more sophisticated than previously thought,

and may attempt to learn about managerial abilities in a context where idiosyncratic volatility

could dampen their response to past performance (see Berk and Green (2004)).

In a recent study, Huang, Wei, and Yan (2012) provide theoretical and empirical evidence on

the existence of sophisticated investors who are capable of rational learning. They show that the

flow-performance sensitivity decreases significantly in the presence of high noise in performance,

but only when investors are rational.14 An important issue at this stage is whether the negative

loading of fees on S1 and S2 results from the rent-seeking behavior of under-performing fund

14In Supplement Table VI in our Internet Appendix we confirm the existence of a significant and monotonic
dampening effect of fund idiosyncratic volatility on the flow-performance sensitivity.

32



managers or from the rational learning process of investors in the presence of high noise in

performance. In the latter case, we would expect the extent of the inverse relationship between

fees and investors sensitivity to decrease, after controlling for the dampening effect on this

sensitivity of idiosyncratic volatility, which our model associates with higher fees. To this end,

we control for the interaction terms S1× IDVOL and S2× IDVOL. Our expectation is for these

interaction variables to enter negatively, hence providing much better insights into the actual

relationship between investor sensitivity and fund fee setting policies. The significantly negative

loadings of MGMT on S1 in column (ii) and S2 in column (iii) is completely absorbed by the

interaction terms S1× IDVOL and S2× IDVOL in Columns (vi) and (viii), respectively.15 Thus,

the failure to properly control for the effect of performance noise on the performance-chasing

behavior of investors could lead to the misinterpretation of the flow-performance sensitivity

as an exogenous perverse incentive for fund managers to charge higher fees. Our evidence of

positive, albeit not always significant, loadings of fees on the variables S1 and S2 run contrary to

the interpretations provided by Christoffersen and Musto (2002) and Gil-Bazo and Ruiz-Verdú

(2009).

** INSERT TABLE VI HERE **

Overall, the findings in Table VI provide further support to our assumption on the effect

of fund idiosyncratic noise on the fee-performance relationship. Our results also highlight that

we do not need to assume opportunistic behaviour on the part of fund managers in response to

performance-insensitive investors, in order to explain cross-sectional variations in advisory fees.

G. The Relationship Between Fees and Before-Fee Performance

Our previous analysis was mainly concerned with the sensitivity of fees to after-fee perfor-

mance, to reflect the way adviser performance is presented to existing and potential investors.16

In this section, as a robustness test, we consider how fee sensitivity varies with respect to before-

fee performance. Hypothesis 4 predicts that a non-negative relationship should exist between

management fees and gross performance. Like Gil-Bazo and Ruiz-Verdú (2009), we follow the

two-stage procedure of Carhart (1997) to mitigate look-ahead bias in estimated gross perfor-

mance, and obtain a panel of monthly abnormal return estimates from that model, where the

15In Supplement Table IX in our Internet Appendix we repeat this analysis using alternative models to estimate
fund performance, flow-performance sensitivity, beta, and idiosyncratic volatility and reach similar conclusions

16As a general rule, advisory performance must be reported in the fund prospectus after the deduction of
management fees, 12b-1 fees, and other minor administrative expenses. Under Rule 206(4)-1(a)(5), the SEC
deems the presentation of before-fee performance alone as potentially misleading, since the average investor
would make an inference about the future returns of the adviser or its skills that would not be true had the
returns been presented on an after-fee basis.
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loadings are estimated over the previous 5 years (with a minimum of 48 months of available

observations). We then estimate fund before-fee abnormal returns in month t as the difference

between the before-fee excess return of the fund and the lagged vector of its betas multiplied by

the vectors of factor realizations in month t. For robustness, we repeat this two-stage procedure

to estimate the Fama and French (1993) before-fee abnormal returns.

We evaluate the relationship between yearly fund fees and yearly gross abnormal returns,

since published expense ratios are generally set annually by fund management companies, even

though they are usually charged to investors on a daily basis. We estimate this relationship

separately for advisory fees and non-advisory (i.e. 12b-1 and marketing) fees, since Malkiel

(1995) indicates that those two components of the total expense ratio could have significantly

different impacts on the overall relationship between the total expense ratio of a fund and

its annual returns. For robustness, we use four different OLS regression specifications: year-

fixed effects with standard errors clustered by fund, to account for serial correlation in the

residuals; year-fixed effects, with standard errors clustered by time, to account for cross-sectional

correlations in the residuals; year-fixed effects, with standard errors clustered by both fund

and time (Petersen (2009)); and Fama and MacBeth (1973) cross-sectional regressions with

Newey and West (1987) heteroskedasticity and autocorrelation robust standard errors. We also

estimate the fee-performance sensitivity with respect to five different fee specifications: total

operating expenses (OPEX); management fees, which are computed as the difference between

fund operating expenses and 12b-1 fees (MGMT); actual management fees provided by CRSP

since 1999 (MGMT2); 12b-1 fees (12B-1); and marketing fees, which are computed as 12b-1

fees plus 1/7-th of fund front-end loads (MKTING).17

The coefficient estimates of fees on fund gross performance GPERF are reported in Ta-

ble VII, for the two cases where performance is estimated using the four-factor risk-adjusted

returns (4-Factor), and the three-factor risk-adjusted returns (3-Factor). The evidence in Ta-

ble VII indicates that a negative relationship between management fees (MGMT) and before-

fee alpha (4-Factor) only exists when standard errors are clustered by fund. Even without

controlling for fund idiosyncratic volatility, the estimated coefficients are never significant at

conventional levels in all other regression specifications, after controlling for the cross-sectional

correlation in the regression residuals (see Kosowski, Timmermann, Wermers, and White (2006)

and Petersen (2009)). As indicated in Models (ii)–(iv) the standard errors are almost twice

(0.128) as large as those documented in Model (i) (0.066). The lack of a significant relationship

17The variable MGMT2 is the fund management fee calculated using the ratios based on the fund’s Statement
of Operations. Since this fee includes waivers and reimbursements, it could differ from the contractual fee reported
by the fund in its prospectus.

34



between management fees and performance is also confirmed by the use of the Fama and Mac-

Beth (1973) two-step estimation with Newey-West standard errors (0.150) in Model (iv). Our

conclusion does not change when we consider the alternative definition of fund management

fees, as measured by the variable MGMT2 in Models (v)–(viii). Across all regression specifi-

cations, the negative loadings of MGMT2 on GPERF are never significant. This evidence for

mutual fund management fees (as either MGMT or MGMT2) in Models (i)–(viii) supports our

Hypothesis 4.

** INSERT TABLE VII HERE **

In Models (ix)–(xii) we repeat the previous analysis for fund total operating expenses

(OPEX). Consistent with Gil-Bazo and Ruiz-Verdú (2009), a significantly negative sensitivity

exists between fund gross performance, 4-factor, and OPEX. However, a closer look at Table VII

suggests that the major driver of the negative correlation between OPEX and GPERF is not the

fund advisory fee but rather its non-advisory fee component, as represented by fund 12b-1 fee

(12B-1) in models (xiii)-(xvi). Since proceeds from 12b-1 fees and marketing fees are intended

to compensate brokerage and distribution expenses rather than fund management costs, these

findings are a further indication that advisers compensation is not inversely related to fund

gross performance. We reach similar conclusions when we use fund marketing fees (MKTING)

in models (xvii)-(xx). The negative relationship between non-advisory fees (either 12B-1 or

MKTING) and gross performance is also consistent with Bergstresser, Chalmers, and Tufano

(2009). They show that broker-sold mutual funds perform worse and charge significantly higher

marketing fees than direct-sold mutual funds. If high 12b-1 fee funds are those mostly offered

by financial intermediaries such as banks and (captive or non-captive) brokers then our evidence

of a negative sensitivity of 12b-1 fees to performance could simply reflect the nature of the fund

distribution channel (see also Christoffersen, Evans, and Musto (2013), and Guercio and Reuter

(2013)). Alternatively, it is also plausible that these financial intermediaries require underper-

forming funds to pay higher distribution fees as a compensation for the greater reputational

risk of offering poor performing funds to their clients (Gil-Bazo and Ruiz-Verdú (2009)). Both

these explanations support the existence of a negative association between marketing fees and

gross performance. Overall, unless investors receive other valuable services from their brokers

that we are simply not able to quantify, our findings suggest that investors would be better off

avoiding brokerage intermediation when buying a mutual fund. Our conclusion does not change

when we estimate the variable GPERF using the three-factor model (3-Factor) as illustrated

in the last three columns of Table VII.
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Why do total operating expenses (OPEX) continue to be negatively related to fund gross

performance? Following the findings of our Monte Carlo experiment in Section II on the re-

lationship between fees and gross alpha, we argue that this negative sensitivity is simply the

result of a spurious relationship originated by the impact of idiosyncratic risk on performance

estimation errors. As such, we would expect the loading of OPEX on the interaction term be-

tween gross performance and idiosyncratic volatility to be always negative and significant. We

report the findings of this test in Table VIII for the four-factor model (4-Factor). The results

for the three-factor model (3-Factor) are illustrated in our Supplementary Appendix. Starting

from the findings in models (xi)-(xii) when OPEX is the dependent variable, the interaction

term GPERF × IDVOL is not only negative and significant (-58.06) but it also explains the

negative loading of OPEX on GPERF. It is also interesting to notice that the same variable

GPERF× IDVOL is never significant when the dependent variable is fund advisory fee (either

MGMT or MGMT2) as there exists no spurious negative relationship between this fee and esti-

mated gross performance. On the contrary, the unsurprising evidence that idiosyncratic noise in

performance does not absorb the negative estimated coefficient of 12b-1 fees or marketing fees

on fund gross performance illustrates the different nature of the economic determinants of such

non-advisory fees. As such, findings for non-advisory fees are consistent with those reported by

Gil-Bazo and Ruiz-Verdú (2009).

** INSERT TABLE VIII HERE **

In their empirical analysis, Cheng, Massa, and Zhang (2013) regress operating expenses (but

not management fees) against gross performance, and find a significant negative relationship

(as do we above).18 After introducing their measure of dispersion of investor opinions, and

its interaction with gross performance, as independent variables, they find that the negative

dependence of operating expenses on gross performance is no longer significant.19 They interpret

the significant negative loading of operating expenses on the interaction term as evidence in

favour of one of their main theoretical results, namely that operating expenses and (true)

gross alphas are negatively correlated, due to the indirect effect of information costs on fees.

Unfortunately, as we demonstrated in Section II, the interaction term in their regression is

most likely capturing nothing more than statistical noise caused by estimation errors of alphas.

Consequently, this interaction term should neither be granted any economic interpretation nor

be extended to the advisory fee component of fund total operating expenses.

18Using fund management fees, our results provide strong empirical evidence that advisory fees are never
negatively correlated with gross performance.

19Their second proxy for investors’ dispersion of opinions is the volatility of fund excess returns. This measure
of fund tracking errors would be highly correlated with fund idiosyncratic volatility.
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Our model predictions in Section I, together with the findings presented in Tables VII and VIII,

strongly suggest that there is no significant negative relationship between gross performance and

advisory fees. Moreover, our detailed decomposition of total operating expenses into advisory

fees (either MGMT or MGMT2) and non-advisory fees (12B-1) indicates that the marketing

components of total operating expenses drive the negative relationship between OPEX and

gross performance.

V. Conclusions

This article develops a model for mutual fund fees, in which the uncertainty of a rational

investor about the performance of a fund is proportional to its idiosyncratic volatility. The model

also takes account of the important institutional constraint that mutual funds cannot be sold

short. Our first major contribution is to identify the unanticipated importance of idiosyncratic

risk as a determinant of mutual fund fees. Second, we demonstrate that fees are insensitive to

market risk. Both results are established theoretically, and demonstrated empirically.

Our third significant contribution is to show that the widely-reported negative fee-performance

relationship for actively-managed mutual funds is largely attributable to the omitted dependence

of fees on idiosyncratic volatility in cross-sectional regressions. With reference to our model, we

argue that the empirical fee-performance relationship is compatible with investor rationality,

and that it does not entail the type of managerial opportunism hypothesized in the literature.

In fact, the insensitivity of fees to market risk suggests that mutual fund investors are risk-

averse, and hence sensitive to performance. These observations pave the way for a somewhat

less pessimistic assessment of the mutual fund industry and the rationality of its clientele, than

is prevalent in the literature.

Finally, we highlight the U-shape of the empirical fee-performance relationship, and explain

it in terms of the interaction between the fees charged by mutual funds and the standard errors of

their estimated alphas. This has unwelcome consequences for cross-sectional regressions of mu-

tual fund fees, which are exacerbated by the fact that the variation in managerial skills appears

to be dominated by the heterogeneity of idiosyncratic risk among mutual funds. Consequently,

any attempt to tease out the dependence of fees on managerial performance is handicapped by

the fact that there is very little signal relative to the amount of U-shaped statistical noise.

A. Proofs and Auxiliary Results

Our first task is to derive the optimal strategy for the investor presented in Theorem 4.

We begin by using (3), and the expression for the MGF of a normal random variable (see e.g.
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Johnson, Kotz, and Balakrishnan 1994), to determine the following convenient representation

for the investor’s value function, conditional on his estimate for the expected risk-adjusted

return of the mutual fund:

L(ξ, η) := E
(
U
Ä
W (ξ, η)

ä ∣∣∣∣ α̂) = 1− E
(
e−γW (ξ,η)

∣∣∣∣ α̂)
= 1− exp

Ç
−γw

(
1 + ξ

Ä
(1− ζ)α̂− ζ

ä
+
Ä
η + ξ(1− ζ)β

ä
µM

)
+

1

2
(γw)2

(Ä
η + ξ(1− ζ)β

ä2
σ2

M + ξ2(1− ζ)2σ2
ε

)å
.

(A.1)

The investor’s problem (2) of identifying the portfolio (ξ∗, η∗) that maximises his expected utility

of terminal wealth, without short-selling the mutual fund, may then be reformulated as follows:

(ξ∗, η∗) = arg max
(ξ,η)∈R+×R

L(ξ, η). (A.2)

To solve it we require the following partial derivatives:

∂L

∂ξ
(ξ, η) = γw

(
1− L(ξ, η)

)
A(ξ, η), (A.3)

∂L

∂η
(ξ, η) = γw

(
1− L(ξ, η)

)
B(ξ, η), (A.4)

∂2L

∂ξ2
(ξ, η) = −(γw)2

(
1− L(ξ, η)

)(
(1− ζ)2

Ä
β2σ2

M + σ2
ε

ä
+A2(ξ, η)

)
, (A.5)

∂2L

∂ξ∂η
(ξ, η) = −(γw)2

(
1− L(ξ, η)

)(
(1− ζ)βσ2

M +A(ξ, η)B(ξ, η)
)
, and (A.6)

∂2L

∂η2
(ξ, η) = −(γw)2

(
1− L(ξ, η)

)(
σ2

M +B2(ξ, η)
)
. (A.7)

In these expressions

A(ξ, η) := (α̂+ βµM)(1− ζ)− ζ − γw(1− ζ)
(Ä
η + ξ(1− ζ)β

ä
βσ2

M + ξ(1− ζ)σ2
ε

)
, and

B(ξ, η) := µM − γw
(
η + ξ(1− ζ)β

)
σ2

M.

The next result, which establishes the concavity of the investor’s value function (A.1), is a

crucial ingredient in the proof of Theorem 4:

Lemma A.1. The investor’s value function L(ξ, η) is concave.

Proof: Establishing the concavity of L(ξ, η) is equivalent to demonstrating that the Hessian

matrix

∇2L(ξ, η) =

Ö
∂2L
∂ξ2

(ξ, η) ∂2L
∂ξ∂η (ξ, η)

∂2L
∂ξ∂η (ξ, η) ∂2L

∂η2
(ξ, η)

è
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is negative semidefinite. This, in turn, is equivalent to showing that neither eigenvalue of

∇2L(ξ, η) is positive. Now, since L(ξ, η) ≤ 1, by inspection of (A.1), it follows that the partial

derivatives (A.5) and (A.7) are both non-positive, whence tr
Ä
∇2L(ξ, η)

ä
≤ 0. Consequently,

since the eigenvalues of ∇2L(ξ, η) are given by

tr
Ä
∇2L(ξ, η)

ä
±
√

tr2
Ä
∇2L(ξ, η)

ä
− 4 det

Ä
∇2L(ξ, η)

ä
2

,

we conclude that L(ξ, η) is concave if and only if det
Ä
∇2L(ξ, η)

ä
≥ 0. To verify the latter

condition, we observe that

det
Ä
∇2L(ξ, η)

ä
=
∂2L

∂ξ2
(ξ, η)

∂2L

∂η2
(ξ, η)−

Ç
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å2

= (γw)4
(
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)2
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å

≥ (γw)4
(
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)2
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(1− ζ)2β2σ2
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−
(
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= (γw)4
(
1− L(ξ, η)

)2(
A(ξ, η)− (1− ζ)βB(ξ, η)

)2
σ2

M,

by virtue of (A.5)–(A.7). In particular, det
Ä
∇2L(ξ, η)

ä
≥ 0, as required.

Before continuing with the proof of Theorem 4, let us consider briefly the situation when

the investor is not confronted with a short-selling constraint on the mutual fund. In that case

Lemma A.1 ensures that he has recourse to the globally optimal strategy (ξ∗∗, η∗∗). More-

over, according to (A.3) and (A.4), this strategy is determined by the first-order conditions

A(ξ∗∗, η∗∗) = 0 and B(ξ∗∗, η∗∗) = 0. By solving the second of these equations for η∗∗, and then

substituting that expression into the first equation, we obtain

ξ∗∗ =
1

γw

(1− ζ)α̂− ζ
(1− ζ)2σ2

ε

and η∗∗ =
1

γw

µM

σ2
M

− ξ∗∗(1− ζ)β. (A.8)

Returning to the investor’s problem with short-selling of the mutual fund disallowed, the nat-

ural candidate for the constrained optimal strategy is obtained by replacing ξ∗∗ with ξ+
∗∗ ≡

max{ξ∗∗, 0} in the two expressions above, thereby yielding the portfolio fractions (ξ∗, η∗) given

by (4). In other words, the investor should choose the globally optimal strategy, if it is ad-

missible. Failing that, if the globally optimal strategy involves a short position in the mutual
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fund, the investor should construct the best portfolio consisting exclusively of holdings in the

money-market account and the market portfolio. Below, we demonstrate formally that this

strategy does indeed solve the investor’s problem:

Proof of Theorem 4: Consider the portfolio strategy (ξ∗, η∗) determined by (4). According to

Borwein and Lewis (2006), Proposition 2.1.2, if the investor’s value function L(ξ, η) is concave

then the condition

〈
∇L(ξ∗, η∗), (ξ − ξ∗, η − η∗)′

〉
≡ ∂L

∂ξ
(ξ∗, η∗)(ξ − ξ∗) +

∂L

∂η
(ξ∗, η∗)(η − η∗) ≤ 0,

for all (ξ, η) ∈ R+ ×R, is sufficient to ensure that (ξ∗, η∗) solves his expected utility maximiza-

tion problem (A.2). Of course, Lemma A.1 has already established the concavity of L(ξ, η).

Moreover, (A.4) yields ∂L
∂η (ξ∗, η∗) = 0, since

B(ξ∗, η∗) = µM− γw
(
η∗+ ξ∗(1− ζ)β

)
σ2

M = µM− γw
Ç

1

γw

µM

σ2
M

− ξ∗(1− ζ) + ξ∗(1− ζ)β

å
σ2

M = 0.

Our task therefore is to demonstrate that ∂L
∂ξ (ξ∗, η∗)(ξ−ξ∗) ≤ 0, for all ξ ≥ 0. Alternatively, since

inspection of (A.1) yields L(ξ∗, η∗) ≤ 1, (A.3) indicates that we must show that A(ξ∗, η∗)(ξ −

ξ∗) ≤ 0, for all ξ ≥ 0. There are two cases to consider:

(i) (ξ∗ > 0): In this case the constraint prohibiting short sales of the mutual fund is not binding,

and (ξ∗, η∗) must be identical to the unconstrained globally optimal portfolio strategy (A.8).

This implies that the first-order condition A(ξ∗, η∗) = 0 is satisfied, whence A(ξ∗, η∗)(ξ−ξ∗) = 0,

for all ξ ≥ 0.

(ii) (ξ∗ = 0): In this case the constraint prohibiting short sales of the mutual fund is binding,

and we may deduce from (4) that

(1− ζ)α̂− ζ ≤ 0 and η∗ =
1

γw

µM

σ2
M

.

From these relations we obtain

A(ξ∗, η∗) = (α̂+ βµM)(1− ζ)− ζ − γw(1− ζ)
(Ä
η∗ + ξ∗(1− ζ)β

ä
βσ2

M + ξ∗(1− ζ)σ2
ε

)
= (α̂+ βµM)(1− ζ)− ζ − γw(1− ζ)

1

γw

µM

σ2
M

βσ2
M

= (1− ζ)α̂− ζ ≤ 0,

whence A(ξ∗, η∗)(ξ − ξ∗) = A(ξ∗, η∗)ξ ≤ 0, for all ξ ≥ 0.
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The lemma below establishes some interesting inequalities involving the PDF and CDF of

a standard normal random variable. These inequalities are apparently original, and may be

of independent interest. We appeal to them repeatedly in the proofs of Lemmas 6 and A.3,

Propositions 9 and 12, and Theorem 9:

Lemma A.2. The following inequalities always hold:

0 < zΦ(z) + ϕ(z) <
Φ2(z)

ϕ(z)
. (A.9)

Proof: To justify the first inequality, we use integration by parts to get

zΦ(z) + ϕ(z) =

∫ z

−∞
ζϕ(ζ) dζ +

∫ z

−∞

∫ ζ
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=

∫ 1
2
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∞

1√
2π

e−ξ dξ +

∫ z

−∞
Φ(ζ) dζ + ϕ(z)

=

∫ z

−∞
Φ(ζ) dζ > 0,

with the aid of the transformation of variables 1
2ζ

2 7→ ξ. Next, Komatsu’s inequality for Mill’s

ratio (see e.g. Dudley 1999) yields

Φ(z)

ϕ(z)
=

Φ(z)

ϕ(−z)
>

1»
1 + 1

4z
2 − 1

2z
=

 
1 +

1

4
z2 +

1

2
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From this we obtain

Φ(z)− 1

2
zϕ(z) >

 
1 +

1

4
z2 ϕ(z),

whence

Φ2(z)− zΦ(z)ϕ(z) > ϕ2(z),

and the second inequality follows.

Next, we prove Lemma 6, which states that the optimum fee charged by the fund manager

is both non-negative and less than the total value of the fund:

Proof of Lemma 6: After rewriting (6) as

F (α, σε, ζ) =
1 + α+ βµM

γκσ3
ε

ζ

(1− ζ)3

(
(1− ζ)α− ζ
(1− ζ)κσε

Φ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å
+ ϕ

Ç
(1− ζ)α− ζ
(1− ζ)κσε

å)
,

Assumption 5 and the first inequality in (A.9) yield the following: F (α, σε, ζ) ≤ 0 if ζ ≤ 0;
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F (α, σε, ζ) > 0 if 0 < ζ < 1; F (α, σε, 1−) = 0; F (α, σε, 1+) = −∞; and F (α, σε, ζ) < 0 if ζ > 1.

In particular, F (α, σε, ζ) > 0 if and only if 0 < ζ < 1.

The following technical result establishes an interesting property of the inverse of Mill’s

ratio. It is the crucial ingredient in the proof of Lemma 8:

Lemma A.3. The function

z 7→ z +
ϕ(z)

Φ(z)
(A.10)

is monotonically increasing.

Proof: With the help of the second inequality in (A.9) we obtain

d
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å
= 1− ϕ(z)

Φ2(z)

Ä
zΦ(z) + ϕ(z)

ä
> 0.

Lemma 6 established very coarse bounds on the optimal fee charged by the fund manager.

More refined bounds are obtained by Lemma 8:

Proof of Lemma 8: Since ζ∗ < 1, by Lemma 6, the first-order condition G(α, σε, ζ∗) = 0 allows

us to infer that (1− ζ∗)α− 2ζ∗ < 0 from (7). From this inequality we obtain ζ∗ >
α

2+α , if α > 0,

while Lemma 6 ensures that ζ∗ > 0, in general. Combining these two observations produces

the lower bound in (8). Next, with reference to (7), we may rewrite the first-order condition

G(α, σε, ζ∗) = 0 as follows:
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by an application of Lemma A.3, since ζ∗

1−ζ∗ >
α+

2 by virtue of the previously established bound

ζ∗ >
α+

2+α+ . From this we may deduce that
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which establishes the upper bound in (8), after some easy manipulation. Finally, taking limits
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in (8) yields
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which establishes the identity ζ∗|σε=0+ = α+

2+α+ .

Before continuing, we pause briefly to compute expressions for the partial derivatives of (7),

which will be required in the proofs of Theorems 9 and 12, and Proposition 10:
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(A.13)

and these expressions are well-defined and continuous, for σε > 0 and 0 < ζ < 1.

Theorem 9 reveals that the optimal fee charged by the manager of the mutual fund is

monotonically increasing with respect to its idiosyncratic volatility:

Proof of Theorem 9: We derive the following inequalities from G(α, σε, ζ∗) = 0 and (7), together

with the fact that 0 < ζ∗ < 1, according to Lemma 6, and an application of the second inequality

in (A.9):
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Next, we combine (A.13) with G(α, σε, ζ∗) = 0 and (7) to get
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< − 1

1− ζ∗
Φ
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(1− ζ∗)κσε

å
< 0, (A.16)

by an application of (A.14). Since ∂G
∂ζ (α, σε, ζ∗) 6= 0, we may employ the Implicit Function

Theorem and (A.12)–(A.13) to derive (9), as follows:

∂ζ∗
∂σε

= −
∂G
∂σε

(α, σε, ζ∗)
∂G
∂ζ (α, σε, ζ∗)

= −
1
σε

(
(1− ζ∗)κσε + ζ∗

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
ϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
1

1−ζ∗

(
ζ∗

(1−ζ∗)κσε − (1− ζ∗)κσε
)
ϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
− (2 + α)Φ

(
(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
= −

1
σε

(
(1− ζ∗)κσε + ζ∗

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
1

1−ζ∗

(
ζ∗

(1−ζ∗)κσε − (1− ζ∗)κσε
)

+ (2 + α) (1−ζ∗)κσε
(1−ζ∗)α−2ζ∗

=
(1− ζ∗)

Ä
2ζ∗ − (1− ζ∗)α

äÄ
(1− ζ∗)ζ∗α− ζ2

∗ + (1− ζ∗)2κ2σ2
ε

ä
σε
Ä
(1− ζ∗)ζ∗α− 2ζ2

∗ + 2(1− ζ∗)2κ2σ2
ε

ä ,

where the third equality follows from G(α, σε, ζ∗) = 0 and (7). Next, to demonstrate that

∂ζ∗
∂σε

> 0, we must establish the inequality ∂G
∂σε

(α, σε, ζ∗) > 0. Suppose, on the contrary, that

∂G
∂σε

(α, σε, ζ∗) ≤ 0. In that case, since 0 < ζ∗ < 1, by virtue of Lemma 6, it follows from (A.12)

that (1− ζ∗)α− ζ∗ < 0. By combining this inequality with (A.14) we get

0 > ζ∗
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε
ϕ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
>
(
(1− ζ∗)α− ζ∗

)
Φ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
.

Next, G(α, σε, ζ∗) = 0 and (7), together with an application of the inequality above to (A.12),

yields

∂G

∂σε
(α, σε, ζ∗) >

1

σε

(
(1− ζ∗)κσεϕ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
+
(
(1− ζ∗)α− ζ∗

)
Φ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å)
=

1

σε

(
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)
Φ
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å)
=
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> 0,
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since 0 < ζ∗ < 1, by virtue of Lemma 6. This contradicts our initial assumption that

∂G
∂σε

(α, σε, ζ∗) ≤ 0, and so we may conclude that ∂G
∂σε

(α, σε, ζ∗) > 0. Finally, since we already

established that ∂G
∂ζ (α, σε, ζ∗) < 0 in (A.16), the Implicit Function Theorem gives

∂ζ∗
∂σε

= −
∂G
∂σε

(α, σε, ζ∗)
∂G
∂ζ (α, σε, ζ∗)

> 0,

as required.

Proposition 10 establishes that the optimal fee charged by the mutual fund manager is a

concave function of its idiosyncratic volatility, in the canonical case when its gross alpha is zero:

Proof of Proposition 10: From (10) we obtain

∂2ζ∗
∂σ2

ε

=
(1− 2ζ∗)

dζ∗
dσε
− (1− ζ∗)ζ∗

σ2
ε

= −2(1− ζ∗)ζ2
∗

σ2
ε

< 0,

since 0 < ζ∗ < 1, by virtue of Lemma 6.

In the special case when the gross alpha of the mutual fund is zero, it is in fact possible to

obtain an explicit expression for the optimal fee charged by the fund manager. This expression

is presented in Proposition 11, which we now prove:

Proof of Proposition 11: By integrating (10) we obtain

∫
1

(1− ζ∗)ζ∗
dζ∗ = c+

∫
1

σε
dσε = c+ lnσε,

where c is an arbitrary constant. The integral on the left-hand side may be computed as follows:

∫
1

(1− ζ∗)ζ∗
dζ∗ =

∫
1− ζ∗
ζ∗

1

(1− ζ∗)2
dζ∗ =

∫
1

z
dz = ln z = ln

ζ∗
1− ζ∗

,

with the aid of the transformation of variables ζ∗
1−ζ∗ 7→ z. Putting everything together yields

ζ∗ =
kσε

1 + kσε
,

where k := ec > 0. Substituting this into (7), and using the fact that G(0, σε, ζ∗) = 0, then

gives
k

κ
Φ

Ç
k

κ

å
+

1

2
ϕ

Ç
k

κ

å
=
k

κ
,

as required. Numerical solution of this equation gives k ≈ 0.6120κ.
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Theorem 12 establishes a positive relationship between the optimal fee charged by the fund

manager and the gross alpha of the mutual fund. It also indicates that the fund manager passes

some portion of any increase in performance on to the investor:

Proof of Theorem 12: Using (A.11) and (A.15), the Implicit Function Theorem gives

∂ζ∗
∂α

= −
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∂G
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= −
(1− ζ∗)

(
Φ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
− ζ∗

(1−ζ∗)κσεϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

))
ζ∗

(1−ζ∗)2κσεϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
− 2

(1−ζ∗)Φ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
= (1− ζ∗)2

Φ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
− ζ∗

(1−ζ∗)κσεϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
2Φ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

)
− ζ∗

(1−ζ∗)κσεϕ
(

(1−ζ∗)α−ζ∗
(1−ζ∗)κσε

) (A.17)

= (1− ζ∗)2
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ä
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ä
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,

by virtue of G(α, σε, ζ∗) = 0 and (7). Finally, applying (A.14) to (A.17) yields

0 <
∂ζ∗
∂α

< (1− ζ∗)2 < 1,

since 0 < ζ∗ < 1, according to Lemma 6.

We conclude by proving Theorem 13, which derives an expression for the sensitivity of the

equilibrium investment flow into the mutual fund with respect to its gross alpha. In particular,

we demonstrate that the flow-performance sensitivity is positive:

Proof of Theorem 13: Using (12) and (A.17), we get
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where the final equality follows from G(α, σε, ζ∗) = 0 and (7). Finally, applying (A.14) to (A.18)

yields
∂ω∗
∂α

>
ζ∗

γ(1− ζ∗)σ2
ε

Φ

Ç
(1− ζ∗)α− ζ∗

(1− ζ∗)κσε

å
= (1− ζ∗)ω∗ > 0,

by virtue of (12), and the fact that 0 < ζ∗ < 1, according to Lemma 6.
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Gil-Bazo, Javier, and Pablo Ruiz-Verdú, 2009, The relation between price and performance in

the mutual fund industry, Journal of Finance 64, 2153–2183.

Golec, Joseph H., 1992, Empirical tests of a principal-agent model of the investor-investment

advisor relationship, Journal of Financial and Quantitative Analysis 20, 145–158.

49



Gruber, Martin J., 1996, Another puzzle: The growth in actively managed mutual funds,

Journal of Finance 51, 783–810.

Guercio, Diane Del, and Jonathan Reuter, 2013, Mutual fund performance and the incentive to

generate alpha, Journal of Finance , forthcoming.

Harless, David W., and Steven P. Peterson, 1998, Investor behavior and the persistence of

poorly-performing mutual funds, Journal of Economic Behavior and Organization 37, 257–

276.

Hortacsu, Ali, and Chad Syverson, 2004, Product differentiation, search costs, and competition

in the mutual fund industry: A case study of S&P 500 index funds, Quarterly Journal of

Economics 119, 403–456.

Huang, Jennifer, Kelsey D. Wei, and Hong Yan, 2007, Participation costs and the sensitivity of

fund flows to past performance, Journal of Finance 62, 1273–1311.

Huang, Jennifer, Kelsey D. Wei, and Hong Yan, 2012, Investor Learning and Mutual Fund

Flows, Working paper, McCombs School of Business.

Hugonnier, Julien, and Ron Kaniel, 2010, Mutual fund portfolio choice in the presence of

dynamic flows, Mathematical Finance 20, 187–227.

Ippolito, Richard A., 1992, Consumer reaction to measures of poor quality: Evidence from the

mutual fund industry, Journal of Law and Economics 35, 45–70.

Jeffrey L. Coles, Jose Suay, and Denise Woodbury, 2000, Fund advisor compensation in closed-

end funds, Journal of Finance 55, 1385–1414.

Jin, Li, 2002, CEO compensation, diversification, and incentives, Journal of Financial Eco-

nomics 66, 29–63.

Johnson, Norman L., Samuel Kotz, and N. Balakrishnan, 1994, Continuous Univariate Distri-

butions: Volume 1. (Wiley, New York) second edn.

Khorana, Ajay, 1996, Top management turnover an empirical investigation of mutual fund

managers, Journal of Financial Economics 40, 403–427.

Kosowski, Robert, Allan Timmermann, Russ Wermers, and Hal White, 2006, Can mutual fund

“stars” really pick stocks? New evidence from a bootstrap analysis, Journal of Finance 61,

2551–2595.

Kuhnen, Camelia M., 2005, Dynamic contracting in the mutual fund industry, Working Paper,

Northwestern University.

50



Lynch, Anthony W., and David K. Musto, 2003, How investors interpret past fund returns,

Journal of Finance 58, 2033–2058.

Malkiel, Burton G., 1995, Returns from investing in equity mutual funds 1971 to 1991, Journal

of Finance 50, 549–572.

Miller, Edward M., 1977, Risk, Uncertainty, and Divergence of Opinion, Journal of Finance 32,

1151–1168.

Newey, Whitney K., and Kenneth D. West, 1987, A simple positive definite heteroscedasticity

and autocorrelation consistent covariance matrix, Econometrica 55, 703–705.

Petersen, Mitchell A., 2009, Estimating standard errors in finance panel data sets: Comparing

approaches, Review of Financial Studies 22, 435–480.

Sirri, Erik R., and Peter Tufano, 1998, Costly search and mutual fund flows, Journal of Finance

53.

Tufano, Peter, and Matthew Sevick, 1997, Board structure and fee-setting in the U.S. mutual

fund industry, Journal of Financial Economics 46, 321–355.

Warner, Jerold B., and Joanna S. Wu, 2001, Why do mutual fund advisory contracts change?

Performance, growth, and spillover effects, Journal of Finance 66, 271–306.

Wermers, Russ, 2000, Mutual fund performance: An empirical decomposition into stock-picking

talent, style, transaction costs, and expenses, Journal of Finance 55, 1655–1703.

Wermers, Russ, 2003, Is money really “smart”? New evidence on the relation between mutual

fund flows, manager behavior, and performance persistence, Working Paper, University of

Maryland.

51



(a)

0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

0.010

0.011

0.012

0.013

0.014

Gross alpha HpercentileL

M
an

ag
em

en
t
F

ee

(b)

0 20 40 60 80 100

0.005

0.008

0.010

0.012

0.011

0.012

0.013

0.014

Net alpha HpercentileL
M

an
ag

em
en

t
F

ee
(c)

0 20 40 60 80 100

0.005

0.010

0.015

0.009

0.012

0.015

Idiosyncratic volatility HpercentileL

M
an

ag
em

en
t
F

ee

(d)

0 20 40 60 80 100

0.020

0.030

0.040

0.018

0.023

0.029

Gross alpha HpercentileL

Id
io

sy
n
cr

at
ic

v
o
la

ti
li

ty

(e)

0 20 40 60 80 100
0.010

0.020

0.030

0.040

0.011

0.016

0.021

0.026

Net alpha HpercentileL

Id
io

sy
n
cr

at
ic

v
o
la

ti
li

ty

Figure 1. Decomposition of the simulated fee-performance relationship. In each of the subfigures
above, the solid curves describe relationships for the simulated data generated by our model, with σα = 0 and
κ = 0.5, while the dotted curves describe the corresponding empirical relationships. In each case, the vertical
scale on the left applies to the simulated data, while the vertical scale on the right applies to the empirical data.
The following relationships are illustrated: (a) fees versus gross alphas; (b) fees versus net alphas; (c) fees versus
gross idiosyncratic volatilities; (d) gross idiosyncratic volatilities versus gross alphas; and (e) gross idiosyncratic
volatilities versus net alphas.
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Figure 2. The relationship between fees and gross idiosyncratic volatilities. (a) The optimal fee ζ∗
charged by the mutual fund manager, as a function of the idiosyncratic volatility σε of the fund, for α = 0
and κ = 0.5, together with the upper and lower bounds from Lemma 8; and (b) the optimal fee ζ∗ charged by
the mutual fund manager as a function of the idiosyncratic volatility σε of the fund (triangles), for the same
parameter values as before, together with the empirically observed relationship between mutual fund fees and
idiosyncratic volatility (diamonds).

(a) (b)

(c) (d)

Figure 3. Fees for different levels of investor expertise. Each subfigure plots the optimal fee ζ∗ charged
by the manager of the mutual fund, as a function of its gross alpha α and its idiosyncratic volatility σε, for
different levels of investor expertise: (a) κ = 0; (b) κ = 0.5; (c) κ = 1; and (d) κ = 1.5. In each case, the bold
curve indicates where the fee equals the gross alpha, which implies that the net alpha offered by the fund is zero
along that curve.
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(a) (b)

Figure 4. Flows and the sensitivity of flows to performance.(a) The equilibrium flow into the mutual
fund, as a function of its gross alpha α and its gross idiosyncratic volatility σε; and (b) the equilibrium flow-
performance sensitivity of the fund, as a function of the same variables. The bold curves indicate where the
functions achieve their maxima.
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Figure 5. The empirical volatility distribution. The empirical distribution of the idiosyncratic volatilities
described in Section III, together with the best-fitting log-normal distribution, based on maximum likelihood. Its
log-scale and shape parameters are µ ≈ −4.2263 and σ ≈ 0.5532, respectively.
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Table II

Correlations Between Estimated Alphas and Estimated Volatilities
Sample correlations between estimated gross and net alphas and estimated gross volatilities, for three simulations
with σα = 0, σα = 0.0025, and σα = 0.005. One, two and three asterisks denote significance at the 10%, 5% and
1% levels, respectively.

σα = 0.0000 σα = 0.0025 σα = 0.0050

Ĉorr(α̂i, σ̂εi) 0.0018 -0.0187 -0.0085
(0.8539) (0.1235) (0.3937)

Ĉorr(α̂i − ζi, σ̂εi) -0.6240∗∗∗ -0.5805∗∗∗ -0.4730∗∗∗

(0.0000) (0.0000) (0.0000)
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Table III

Idiosyncratic Volatility and Other Mutual Fund Characteristics
This table presents average management fees (MGMT) for quintile portfolios of idiosyncratic volatility and
other selected fund characteristics, for the period from 1994 to 2007. Funds are sorted according to their lagged
idiosyncratic volatilities (IDVOL), and then assigned to quintile portfolios. The portfolio with the lowest (highest)
idiosyncratic volatility funds is denoted IDVOL.Low (IDVOL.High). We also allocate funds to quintile portfolios,
based on each of the following characteristics: the logarithm of fund total net assets (FNDSIZE), in Panel A;
the logarithm of fund family total net assets (FAMSIZE), in Panel B; fund portfolio turnover, computed as the
minimum of aggregated sales and aggregated purchases of securities (TRNOVR), in Panel C; and the logarithm
of the number of years since fund inception (FNDAGE), in Panel D. For each panel, we report the difference
between the two extreme quintile portfolios (High− Low or Old−Young). Levels of significance are denoted by
asterisks, with one, two, and three asterisks indicating significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Quintile Portfolios of Fund TNA
FNDSIZE.Low FNDSIZE.2 FNDSIZE.3 FNDSIZE.4 FNDSIZE.High High− Low

IDVOL.Low 1.042 1.035 0.966 0.908 0.748 -0.294∗∗∗

IDVOL.2 1.209 1.155 1.068 1.013 0.838 -0.371∗∗∗

IDVOL.3 1.321 1.254 1.148 1.091 0.944 -0.377∗∗∗

IDVOL.4 1.416 1.305 1.239 1.167 1.001 -0.415∗∗∗

IDVOL.High 1.691 1.516 1.386 1.251 1.078 -0.613∗∗∗

High-Low 0.649∗∗∗ 0.482∗∗∗ 0.420∗∗∗ 0.343∗∗∗ 0.330∗∗∗

Panel B: Quintile Portfolios of Fund Family TNA
FAMSIZE.Low FAMSIZE.2 FAMSIZE.3 FAMSIZE.4 FAMSIZE.High High− Low

IDVOL.Low 1.056 1.017 0.947 0.867 0.751 -0.305∗∗∗

IDVOL.2 1.213 1.122 1.053 0.976 0.852 -0.361∗∗∗

IDVOL.3 1.302 1.219 1.136 1.062 0.979 -0.323∗∗∗

IDVOL.4 1.393 1.278 1.224 1.133 1.040 -0.353∗∗∗

IDVOL.High 1.634 1.469 1.354 1.217 1.150 -0.484∗∗∗

High-Low 0.578∗∗∗ 0.452∗∗∗ 0.407∗∗∗ 0.350∗∗∗ 0.399∗∗∗

Panel C: Quintile Portfolios of Fund Portfolio Turnover
TRNOVR.Low TRNOVR.2 TRNOVR.3 TRNOVR.4 TRNOVR.High High− Low

IDVOL.Low 0.816 0.919 0.931 0.953 1.032 0.216∗∗∗

IDVOL.2 0.978 1.031 1.068 1.043 1.062 0.084∗∗∗

IDVOL.3 1.106 1.127 1.123 1.167 1.196 0.091∗∗∗

IDVOL.4 1.145 1.176 1.203 1.271 1.234 0.089∗∗∗

IDVOL.High 1.260 1.322 1.374 1.395 1.444 0.184∗∗∗

High-Low 0.445∗∗∗ 0.403∗∗∗ 0.443∗∗∗ 0.441∗∗∗ 0.413∗∗∗

Panel D: Quintile Portfolios of Fund Age
FNDAGE.Young FNDAGE.2 FNDAGE.3 FNDAGE.4 FNDAGE.Old Old−Young

IDVOL.Low 0.780 0.928 0.935 0.947 0.827 0.047
IDVOL.2 1.006 1.079 1.080 1.037 0.924 -0.082
IDVOL.3 1.177 1.190 1.152 1.122 1.058 -0.119
IDVOL.4 1.285 1.268 1.238 1.176 1.139 -0.146
IDVOL.High 1.358 1.396 1.378 1.382 1.279 -0.079

High-Low 0.578∗ 0.467∗∗∗ 0.443∗∗∗ 0.435∗∗∗ 0.452∗∗∗
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Table VII

Mutual Fund Fees and Before-Fee Performance
This table examines the relationship between different mutual fund fees and before-fee risk-adjusted performance over the
period from January 1994 to December 2007. We estimate the fee-performance sensitivity using as dependent variable
five different fee specifications: (a) management fees (MGMT) computed as total operating expenses minus 12b-1 fees;
(b) actual management fee reported by the fund in its statement of operations and available over the period from 1999
through 2007 (MGMT2); (c) total operating expenses (OPEX); (d) 12b-1 fees (12b-1); and (e) marketing fees (MKTING)
which are computed as 12b-1 fees plus 1/7th of fund front-end loads. The independent variable is the fund gross expected
performance, GPERF, estimated using the two-stage procedure of Carhart (1997) to mitigate look-ahead bias. First, we
obtain a panel of monthly risk-adjusted return estimates from the four-factor model where the loadings are estimated
over the previous 60 months (with a minimum of 48 months of available observations). We then estimate fund before-fee
abnormal returns in month t as the difference between the fund’s before-fee excess return and the lagged vector of betas
multiplied by the vectors of factor realizations in month t. We also repeat this two-stage procedure to estimate the Fama
and French (1993) before-fee risk-adjusted returns. The coefficient estimates of fees on fund gross performance GPERF
are reported for the two cases where performance is estimated using the four-factor model (4-Factor), and the three-factor
model (3-Factor). For each fund fee we estimate the fee-performance sensitivity using four different OLS specifications:
(1) year fixed effects with standard errors clustered by fund (Fund); (2) year fixed effects with standard errors clustered by
time (Time); (3) year fixed effects with standard errors clustered by both fund and time (Fund-Time); and (4) the Fama
and MacBeth (1973) cross-sectional regression with Newey and West (1987) heteroskedasticity and autocorrelation robust
standard errors (Newey-West). All standard errors are reported in parentheses. One, two and three asterisks indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

Fee Type Std. Err. Obs. GPERF Coeff. R2 GPERF Coeff. R2

(i) MGMT Fund 10,934 4-Factor -0.175∗∗∗ 4.9% 3-Factor -0.113∗ 4.8%
(0.066) (0.061)

(ii) MGMT Time 10,934 4-Factor -0.175 4.9% 3-Factor -0.113 4.8%
(0.128) (0.134)

(iii) MGMT Fund-Time 10,934 4-Factor -0.175 4.9% 3-Factor -0.113 4.8%
(0.127) (0.133)

(iv) MGMT Newey-West 10,934 4-Factor -0.192 0.8% 3-Factor -0.138 0.6%
(0.150) (0.123)

(v) MGMT2 Fund 9,359 4-Factor -0.092 0.1% 3-Factor -0.051 0.1%
(0.076) (0.064)

(vi) MGMT2 Time 9,359 4-Factor -0.092 0.1% 3-Factor -0.051 0.1%
(0.102) (0.086)

(vii) MGMT2 Fund-Time 9,359 4-Factor -0.092 0.1% 3-Factor -0.051 0.1%
(0.114) (0.095)

(viii) MGMT2 Newey-West 9,359 4-Factor -0.132 0.2% 3-Factor -0.108 0.3%
(0.150) (0.129)

(ix) OPEX Fund 10,934 4-Factor -0.527∗∗∗ 3.1% 3-Factor -0.396∗∗∗ 2.9%
(0.080) (0.071)

(x) OPEX Time 10,934 4-Factor -0.527∗∗∗ 3.1% 3-Factor -0.396∗∗∗ 2.9%
(0.153) (0.139)

(xi) OPEX Fund-Time 10,934 4-Factor -0.527∗∗∗ 3.1% 3-Factor -0.396∗∗∗ 2.9%
(0.155) (0.141)

(xii) OPEX Newey-West 10,934 4-Factor -0.460∗∗ 1.1% 3-Factor -0.370∗∗ 0.8%
(0.207) (0.177)

(xiii) 12B-1 Fund 10,934 4-Factor -0.352∗∗∗ 11.4% 3-Factor -0.283∗∗∗ 11.2%
(0.047) (0.045)

(xiv) 12B-1 Time 10,934 4-Factor -0.352∗∗∗ 11.4% 3-Factor -0.283∗∗∗ 11.2%
(0.085) (0.093)

(xv) 12B-1 Fund-Time 10,934 4-Factor -0.352∗∗∗ 11.4% 3-Factor -0.283∗∗∗ 11.2%
(0.086) (0.094)

(xvi) 12B-1 Newey-West 10,934 4-Factor -0.268∗∗ 0.8% 3-Factor -0.232∗∗ 0.8%
(0.098) (0.096)

(xvii) MKTING Fund 10,934 4-Factor -0.200∗∗∗ 8.9% 3-Factor -0.195∗∗∗ 8.9%
(0.056) (0.055)

(xviii) MKTING Time 10,934 4-Factor -0.200∗∗∗ 8.9% 3-Factor -0.195∗∗∗ 8.9%
(0.061) (0.055)

(xix) MKTING Fund-Time 10,934 4-Factor -0.200∗∗∗ 8.9% 3-Factor -0.195∗∗∗ 8.9%
(0.064) (0.059)

(xx) MKTING Newey-West 10,934 4-Factor -0.368∗∗ 0.7% 3-Factor -0.393∗∗ 0.7%
(0.164) (0.154)
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Table VIII

Mutual Fund Fees and Before-Fee Performance
This table examines the sensitivity of different mutual fund fees to gross risk-adjusted returns while controlling
for cross-sectional variations in fund idiosyncratic volatility from January 1994 to December 2007. We estimate
the fee-performance sensitivity using as dependent variable five different fee specifications: (a) management fees
(MGMT) computed as total operating expenses minus 12b-1 fees; (b) actual management fee reported by the
fund in its statement of operations and available over the period from 1999 through 2007 (MGMT2); (c) total
operating expenses (OPEX); (d) 12b-1 fees (12b-1); and (e) marketing fees (MKTING) which are computed as
12b-1 fees plus 1/7-th of fund front-end loads. Our main independent variable is the fund before-fee abnormal
returns, GPERF, computed as the difference between the fund’s before-fee excess return and the lagged vector
of betas multiplied by the vectors of factor realizations in month t. Fund gross abnormal returns are estimated
using the Carhart (1997) before-fee risk-adjusted returns over the previous five years (requiring a minimum of
48 months of available observations). To test our model prediction on the relationship between fees and fund
idiosyncratic volatility we include the variable IDVOL. To account for possible non-linearities in the fee-volatility
relationship we introduce the variable

√
IDVOL . We isolate the effect on the fee-performance sensitivity of

IDVOL using the interaction term GPERF × IDVOL. All regression models are estimated using the Fama
and MacBeth (1973) approach with Newey and West (1987) heteroskedasticity and autocorrelation consistent
standard errors (in parentheses). One, two and three asterisks indicate statistical significance at the 10%, 5%,
and 1% level, respectively.

Fee GPERF IDVOL GPERF× IDVOL
√
IDVOL R2 Obs.

(i) MGMT -0.192 0.8% 10,934
(0.150)

(ii) MGMT -0.186 13.381∗∗∗ 11.2% 10,934
(0.152) (1.292)

(iii) MGMT -0.057 15.152∗∗∗ -36.494 15.4% 10,934
(0.137) (1.684) (22.082)

(iv) MGMT -0.050 -9.476 -33.361 7.761∗∗∗ 16.3% 10,934
(0.144) (5.566) (20.237) (1.341)

(v) MGMT2 -0.132 0.2% 9,359
(0.150)

(vi) MGMT2 -0.142 5.560∗∗∗ 2.4% 9,359
(0.151) (1.493)

(vii) MGMT2 -0.100 5.622∗∗ -14.572 2.4% 9,359
(0.136) (1.836) (9.158)

(viii) MGMT2 -0.051 -1.064 -7.994∗ 6.628∗∗∗ 3.7% 9,359
(0.136) (2.562) (4.008) (0.906)

(ix) OPEX -0.460∗∗ 1.1% 10,934
(0.207)

(x) OPEX -0.459∗∗ 11.924∗∗∗ 6.9% 10,934
(0.205) (1.197)

(xi) OPEX -0.249 13.566∗∗∗ -58.062∗∗ 10.4% 10,934
(0.146) (1.686) (27.744)

(xii) OPEX -0.245∗ -11.371∗ -58.757∗∗ 7.891∗∗∗ 11.4% 10,934
(0.133) (6.187) (25.774) (1.498)

(xiii) 12B-1 -0.268∗∗ 0.8% 10,934
(0.098)

(xiv) 12B-1 -0.273∗∗ -1.457∗ 1.1% 10,934
(0.098) (0.711)

(xv) 12B-1 -0.192∗∗ -1.586∗∗ -21.568∗∗∗ 1.9% 10,934
(0.083) (0.627) (6.490)

(xvi) 12B-1 -0.195∗∗ -1.895 -25.395∗∗∗ 0.130 2.3% 10,934
(0.085) (2.912) (7.025) (0.827)

(xvii) MKTING -0.368∗∗ 0.7% 10,934
(0.164)

(xviii) MKTING -0.180 3.146 3.3% 10,934
(0.177) (4.032)

(xix) MKTING 0.072 3.730 -66.705∗∗ 4.5% 10,934
(0.276) (5.073) (30.169)

(xx) MKTING 0.124 -33.311 -74.537∗∗ 10.344 3.8% 10,934
(0.279) (22.718) (32.926) (7.475)
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SUPPLEMENTARY APPENDIX FOR

“THE IMPACT OF IDIOSYNCRATIC RISK ON MUTUAL FUND FEES”

A. Data: Sample Selection and Descriptive Statistics

A.1 Investment Objectives, Policy Codes, and Share Classes

Since CRSP uses different providers of mutual fund investment objectives at different times,

we combine the information supplied by a number of different providers to stratify our sample

according to the investment objective codes of its constituent funds. In particular, we used

the Wiesenberger objective codes “GCI,” “LTG,” “MCG,” and “SCG,” for the period from

1990 to 1992; the Standard & Poor’s detailed objective codes “AGG,” “GRI,” “GRO,” “ING,”

“SCG,” and “GMC” for the period from 1993 to 1998; and the Lipper investment objective

codes of “G,” “GI,” “LSE,” “MC,” “MR,” and “SG” for the period from 1998 to 2007. We

removed funds whose names contained strings that were inconsistent with our selected policy

codes. The following filters were employed for this purpose: “B&P,” “Bal,” “Bonds,” “C&I,”

“GS,” “Leases,” “MM,” and “TFM.” Collectively, the filters based on policy codes contributed

to the elimination of 353 fund share classes from the sample. In addition, we separated the

mutual funds in our sample into their various share classes, by recursively searching for share

class identifiers in their names. This name search is necessary as CRSP does not provide a

fund share class identifier before the year 2003. In addition to the automated procedure for

separating funds into share classes, based on the class identifier in their names, we also carefully

check by-hand their classification. This manual check increased the size of the final sample by

about 3%.

A.2 Index Funds and Institutional Funds

The CRSP database does not provide a flag for distinguishing between passively-managed

funds and actively-managed funds before June 2008. To overcome this obstacle, we exclude

from the final sample all funds whose names contain the following strings: “Index,” “Idx,”

“Ix,” “Indx,” “Nasdaq,” “Dow,” “Mkt,” “DJ,” “S&P,” “Barra,” “100,” “400,” “500,” “1000,”

“ETF,” “Exchange,” “Vanguard,” and “Balanced.”. The task of removing institutional funds is

partly facilitated by the fact that the CRSP database provides a flag for identifying institutional

funds. However, since this flag is not sufficient as it is sometimes missing in the CRSP dataset,

we exclude all funds whose names contain the following strings: “/Y,” “/I,” “Class Y,” and

“Class I.” In total, the process of filtering out index funds and institutional funds by coding the

mutual fund names further reduced the size of our sample by 2,369 fund share classes.
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A.3 Descriptive Statistics

In Supplement Table I we present the summary statistics of our sample of U.S. diversified

equity mutual funds. The values reported there agree with the findings of previous studies, and

describe our sample prior to the elimination of funds with fewer than 36 months of observations.

Those funds were subsequently removed to decrease the likelihood of our results being affected

by incubation funds (see Evans (2010)).

The average TNA of the funds in our sample is around $860 million, with a standard

deviation of approximately $3.6 billion, and their average age is almost 10 years in excess of

their first filing with the SEC, with a percentile deviation between 4 years and 67 years. We

observe that the number of funds per family (NFNDFAM) has a skewed distribution, due to

the prevalence of single-fund families; the average family contains about 24 funds.

With respect to fees, we see that the average management fee (MGMT) for the funds in

our sample is 1.12%, with a standard deviation of 0.40%, while fund total operating expenses

average 1.56%, with a standard deviation of 0.55%. These figures are based on 29,553 fund-year

observations.

The statistics for Carhart (1997) expected risk-adjusted after-fee returns (NPERF) in Sup-

plement Table I suggest that mutual funds under-perform their benchmarks to the extent of

their fees, on average (see e.g. Carhart (1997), Wermers (2000), Kosowski, Timmermann, Wer-

mers, and White (2006), and Fama and French (2010)). Similar statistics are provided for the

CAPM, for comparison. We also observe that although a small number of funds appear to

deliver positive after-fee performance, their impact is overwhelmed by poor performers.

According to Supplement Table I, the average before-fee idiosyncratic volatility (IDVOL) of

the funds in our sample is 1.6%, with a standard deviation of 1.18%. Comparing the average

idiosyncratic volatility with the average total volatility of 4.33% suggests that the funds in our

sample are not particularly well-diversified.
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Supplement Table. I

Summary Statistics
This table presents descriptive statistics for our sample of diversified U.S. equity mutual funds, for the period
from 1994 to 2007. We provide descriptive statistics for the following fund and family characteristics: fund total
net assets, in $ million (FNDTNA); fund family total net assets, in $ billion (FAMTNA); fund age, expressed as
years since inception (FNDAGE); the average number of funds per family (NFNDFAM); fund portfolio turnover
(TRNOVR); annual management fees, calculated as the difference between total operating expenses and 12b-1 fees
(MGMT); annual total operating expenses (OPEX); fund annual after-fee returns (RETRN); and the volatility of
fund returns over the previous 12 months (VOL); and the average active share of fund portfolio (ACTIVESHR)
which is computed as half of the difference between the holdings of a mutual fund and the holdings of its
benchmark (see Cremers and Petajisto (2009) for more details on the construction of this variable). We estimate
the intercepts for the CAPM model (NPERFCAPM) and the Carhart (1997) model (NPERF), as proxies for fund
risk-adjusted returns. The levels of systematic risk of funds are measured by the estimated betas for the CAPM
model (BETACAPM) and the Carhart (1997) model (BETA). Finally, the idiosyncratic volatilities of funds are
expressed as the standard devitions of the previous 36 monthly residuals for the CAPM (IDVOLCAPM) and the
Carhart (1997) model (IDVOL).

Percentiles
Obs. Mean Std.Dev. 1% 25% 50% 75% 99%

FNDTNA 29,482 856.5 3,663.6 0.4 22.6 99.3 441.1 13,408.9
FNDAGE 29,491 10.10 1.95 4.00 6.00 8.83 14.00 66.83
FAMTNA 29,656 21.96 72.40 0.00 0.00 1.31 10.81 426.44
NFNDFAM 29,656 23.75 29.59 1.00 1.00 12.00 37.00 135.00
TRNOVR 29,377 0.92 1.03 0.03 0.38 0.69 1.16 4.40
NPERFCAPM 29,656 -0.56 7.20 -19.11 -4.26 -0.96 2.43 20.44
NPERF 29,656 -1.36 5.43 -15.81 -3.87 -1.42 1.08 14.24
RETRN 29,656 8.67 19.52 -41.88 -0.34 9.59 18.74 62.15
MGMT 29,553 1.12 0.40 0.22 0.90 1.08 1.29 2.50
OPEX 29,553 1.56 0.55 0.45 1.15 1.50 1.98 2.96
VOL 29,656 4.20 2.29 1.04 2.69 3.66 5.16 12.68
ACTIVESHR 14,037 75.99 15.77 35.10 65.10 78.40 89.50 98.20
BETACAPM 29,656 0.99 0.34 0.09 0.81 0.97 1.17 1.91
BETA 29,656 0.97 0.24 0.12 0.88 0.98 1.07 1.56
IDVOLCAPM 29,656 2.27 1.66 0.46 1.16 1.80 2.87 8.55
IDVOL 29,656 1.57 1.18 0.37 0.88 1.26 1.89 6.61

B. Idiosyncratic Volatility and Fund Characteristics

In Supplement Table II we examine the characteristics of funds grouped according to their

Strategic Insights investment objective codes of “ING”, “GRI”, “GRO”, “GMS”, “SCG”, and

“AGG”. We repeat the analysis using the CDA Spectrum investment objective codes of “Growth

& Income”, “Growth”, and “Aggressive Growth”. In Supplement Table III we summarize

the average fund characteristics and factor loadings of quintile portfolios of funds sorted by

IDVOL. We then compute the return of each portfolio as the equally-weighted average return

of all constituent funds over the next month after portfolio formation to guard against potential

endogeneity issues. On the resulting time series of monthly portfolio returns we run the Carhart

(1997) factor model. Our findings remain qualitatively similar when we consider decile portfolios

of sorted IDVOL.
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Supplement Table. II

Fund Idiosyncratic Volatility and Investment Objective Categories
In this table we report some descriptive statistics for our sample of US diversified equity mutual funds from 1994 to
2007. In Panel A we separate fund descriptive statistics by investment objectives using the following Strategic Insights
Codes: “ING”, “GRI”, “GRO”, “GMS”, “SCG”, and “AGG”. We repeat the analysis using the following CDA Spectrum
Codes: “Growth & Income” [4], “Growth” [3], and “Aggressive Growth” [2]. For each investment objective code we
then calculate the following average fund characteristics: fund idiosyncratic volatility estimated using the CAPM model
(IDVOL (capm)); fund idiosyncratic volatility estimated using the Carhart (1997) four-factor model (IDVOL (4-factor));
within-objective standard deviation of fund idiosyncratic volatility (IDVOL StdDev); fund portfolio turnover (TRNOVR);
percentage annual management fees (MGMT) computed as the difference between fund total operating expenses and 12b-1
fees; percentage annual total operating expenses (OPEX); total fund TNA in $billion (Fund TNA); fund age (in years)
since its inception (Fund Age); and average active share of fund portfolio (ACTIVE SHR) which is computed as half of
the difference between the holdings of a mutual fund and the holdings of its benchmark (see Cremers and Petajisto (2009)
for more details on the construction of this variable). To measure the degree of competition within each objective code we
also compute the Herfindahl index (HINDEX). A lower HINDEX would be associated with a greater level of competition
in the objective code.

Num IDVOL IDVOL IDVOL TRNOVR MGMT OPEX Fund Fund ACTIVE HINDEX

Funds (capm) (4-factor) StdDev (p.a.) (in %) (in %) TNA Age SHR (in %)

Strategic Insights Objective Codes

Income & Growth (ING) 185 1.47 1.01 0.35 0.66 0.89 1.34 1.23 11.72 73.70 6.22

Growth & Income (GRI) 545 1.48 1.07 0.55 0.73 0.99 1.34 1.01 15.06 69.89 3.87

Growth (GRO) 941 1.88 1.43 0.82 0.87 1.11 1.43 0.81 12.50 76.15 2.79

MidCaps Growth (GMC) 172 2.73 1.86 0.75 1.14 1.11 1.49 0.69 9.64 85.28 6.21

Small Cap Growth (SCG) 425 2.96 1.87 0.67 0.92 1.22 1.53 0.36 8.66 91.35 3.50

Aggressive Growth (AGG) 217 3.17 2.11 1.36 1.37 1.28 1.68 0.44 11.25 84.38 5.66

CDA Spectrum Objective Codes

Growth & Income [4] 718 1.51 1.08 0.49 0.68 0.87 1.39 1.07 13.8 65.27 4.51

Growth [3] 2,181 2.21 1.57 0.89 0.93 1.17 1.52 0.49 9.5 77.86 3.45

Aggressive Growth [2] 367 3.36 2.23 1.04 1.15 1.26 1.63 0.58 12.7 85.99 5.23
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C. Additional Tests

Supplement Table IV illustrates the cross-sectional relationship between management fees

(MGMT)and idiosyncratic volatilities in each year of our sample period from 1994 to 2007.

Specifically, we sort funds in each year based on lagged fund idiosyncratic volatility estimated

using the unconditional Carhart (1997) four-factor model (IDIOVOL) and allocate them to

decile portfolios. Decile 1 (Decile 10) comprises funds with the lowest (highest) IDIOVOL. We

then average MGMT within each decile portfolios of IDIOVOL. It is interesting to notice the

existence of a remarkable stability in the level of management fees across years within each

portfolio.

** INSERT SUPPLEMENT TABLE IV HERE **

Supplement Table V provides another insight into the implications of the U-shaped rela-

tionship between fund idiosyncratic risk and performance discussed in Section II and illustrated

in Figure ?? of our paper. We compute the transition probabilities of fund performance, con-

ditional on decile portfolios of idiosyncratic risk, IDVOL. Our evidence highlights that the

percentage of funds persisting in the middle performance ranking [P2,t−1; P2,t] decreases mono-

tonically from 31.2% for Decile 1 to just 2.82% for Decile 10. Indeed, for the high idiosyncratic

volatility portfolio (Decile 10), a greater proportion of funds tend to cluster in the tails of

performance distribution. Specifically, the likelihood of funds jumping from one tail of the per-

formance distribution to the other (either [P1,t−1; P3,t] or [P3,t−1; P1,t]) increases in the level of

IDVOL.

** INSERT SUPPLEMENT TABLE V HERE **

In Supplement Table VI we illustrate the degree of reduction in the flow-performance sen-

sitivity caused by higher fund idiosyncratic volatility as discussed in Section IV of our paper.

Higher levels of idiosyncratic noise are associated with a reduction in investors’ response to

fund’s recent performance as indicated by the monotonically decreasing sensitivity of flows to

the interaction term between NPERF and dummy variables for quintile portfolios of sorted

IDVOL. This evidence is consistent with the volatility dampening effect recently documented

by Huang, Wei, and Yan (2012).

** INSERT SUPPLEMENT TABLE VI HERE **
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Supplement Table. IV

Management Fees Versus Idiosyncratic Volatility Over Time
This table reports average management fees for decile portfolios of idiosyncratic volatility, for the period from
1994 to 2007. Decile 1 consists of the funds with the lowest idiosyncratic volatilities, while the funds with the
highest idiosyncratic volatilities are in Decile 10. We also report the inter-quartile range (IQR) and the difference
between the average management fees charged by the funds in the top decile portfolio and the bottom decile
portfolio (Dec10−Dec1). These differences are significant at the 5% level.

Decile Decile Decile Decile Decile Decile Decile Decile Decile Decile IQR Dec10
1 2 3 4 5 6 7 8 9 10 −Dec1

1994 0.87 0.94 1.00 1.07 1.20 1.13 1.21 1.27 1.40 1.54 0.24 0.67

1995 0.87 0.97 0.94 1.09 1.15 1.20 1.16 1.30 1.32 1.52 0.28 0.65

1996 0.86 0.99 1.02 1.04 1.18 1.17 1.23 1.19 1.33 1.56 0.20 0.70

1997 0.90 0.98 1.03 1.06 1.12 1.18 1.16 1.24 1.25 1.50 0.19 0.60

1998 0.86 0.93 0.96 0.99 1.12 1.09 1.10 1.22 1.26 1.44 0.23 0.58

1999 0.85 0.91 1.02 1.05 1.09 1.12 1.10 1.23 1.25 1.45 0.18 0.60

2000 0.87 0.91 1.00 1.05 1.04 1.14 1.18 1.15 1.25 1.45 0.16 0.58

2001 0.82 0.99 0.99 1.02 1.06 1.09 1.17 1.16 1.19 1.39 0.17 0.57

2002 0.82 0.99 0.99 1.02 1.12 1.15 1.16 1.19 1.27 1.38 0.19 0.56

2003 0.89 1.04 1.00 1.06 1.14 1.19 1.24 1.23 1.25 1.49 0.19 0.60

2004 0.86 1.01 1.07 1.11 1.20 1.19 1.32 1.28 1.32 1.52 0.23 0.66

2005 0.83 0.98 1.00 1.04 1.13 1.14 1.23 1.26 1.28 1.45 0.24 0.62

2006 0.83 0.97 1.00 1.03 1.10 1.14 1.16 1.26 1.26 1.44 0.23 0.61

2007 0.78 0.89 1.02 1.00 1.06 1.11 1.12 1.19 1.22 1.32 0.17 0.54

1994–2007 0.85 0.96 1.00 1.05 1.12 1.15 1.18 1.23 1.28 1.46 0.20 0.61
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Supplement Table. V

Annual Transition Probabilities of Mutual Fund Performance
Conditional on the Level of Idiosyncratic Volatility

The table documents the inter-tercile transition probabilities (in percentage) of fund annual realized (after-fee)
returns conditional on the level of their idiosyncratic volatility (IDVOL). In each year, we first rank funds based
on their level of idiosyncratic volatility and allocate them to decile portfolios. Decile 1 (Decile 10) is a portfolio
of funds with the lowest (highest) level of fund idiosyncratic volatility. We then sort and separate fund annual
realized returns in three tercile portfolios, P1, P2, and P3, with portfolio P1 (P3) comprising funds with the
worst (best) annual performance. The sample is subsequently divided in nine groups based on the year-on-year
inter-tercile performance transition. For instance, a fund moving from the lowest tercile portfolio (P1,t−1) to the
highest tercile portfolio (P3,t) from year t-1 to year t is indicated as [P1,t−1; P3,t]. For each decile portfolio of
idiosyncratic volatility we then compute the distribution of fund transition probabilities. We also document the
number of funds that populate each decile together with the interquartile ranges (I-Q range ) and the differences
in transition probabilities between the top and the bottom deciles of IDVOL (Dec10 - Dec1). In Panel B, we
repeat this analysis by computing the fund transition probabilities from year t-2 to year t.

Num. [P1,t−1; [P1,t−1; [P1,t−1; [P2,t−1; [P2,t−1; [P2,t−1; [P3,t−1; [P3,t−1; [P3,t−1;
obs. P1,t] P2,t] P3,t] P1,t] P2,t] P3,t] P1,t] P2,t] P3,t]

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Decile 1 3,261 9.41 13.03 3.77 14.19 31.18 7.11 4.69 8.43 8.19

Decile 2 3,257 12.80 11.18 4.21 14.06 22.08 9.89 5.43 11.67 8.69

Decile 3 3,263 14.47 10.09 6.41 12.75 17.96 11.01 6.65 9.96 10.70

Decile 4 3,257 14.37 9.92 6.75 12.19 13.79 11.08 6.54 11.15 14.22

Decile 5 3,261 13.58 8.80 7.02 9.01 13.24 10.73 9.04 12.07 16.52

Decile 6 3,259 12.92 9.42 9.73 10.56 9.63 10.52 8.41 10.65 18.17

Decile 7 3,258 13.57 9.18 9.64 10.68 8.75 10.59 10.68 8.66 18.26

Decile 8 3,263 14.81 9.14 12.02 9.38 7.66 10.15 11.31 10.36 15.17

Decile 9 3,268 14.30 9.92 11.48 7.96 5.51 9.92 14.79 8.48 17.64

Decile 10 3,258 22.58 7.55 14.97 5.43 2.82 6.29 16.94 6.66 16.75

I-Q range 1.36 0.90 4.55 3.51 8.99 0.80 4.59 2.50 5.84

10 - 1 13.17 -5.48 11.20 -8.76 -
28.36

-0.82 12.25 -1.77 8.56

Num. [P1,t−2; [P1,t−2; [P1,t−2; [P2,t−2; [P2,t−2; [P2,t−2; [P3,t−2; [P3,t−2; [P3,t−2;
obs. P1,t] P2,t] P3,t] P1,t] P2,t] P3,t] P1,t] P2,t] P3,t]

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Decile 1 3,004 9.55 12.45 4.46 13.98 30.39 9.45 4.73 9.62 5.36

Decile 2 3,025 11.31 12.13 3.97 15.57 20.96 10.74 6.05 11.44 7.83

Decile 3 3,043 12.65 10.12 7.69 12.91 17.35 10.71 8.31 10.22 10.02

Decile 4 3,028 10.96 9.68 7.83 11.36 14.00 12.09 10.14 11.33 12.62

Decile 5 3,032 10.32 8.34 8.15 10.69 12.76 11.38 10.62 12.90 14.84

Decile 6 3,032 10.39 8.71 11.31 9.80 10.09 11.54 11.51 11.05 15.60

Decile 7 3,008 12.30 8.51 12.27 10.80 7.81 11.07 11.77 10.24 15.23

Decile 8 3,014 14.07 9.42 12.08 8.16 7.80 9.95 12.74 10.25 15.53

Decile 9 3,036 13.41 8.23 13.67 7.58 4.94 8.14 16.34 10.77 16.93

Decile 10 3,032 19.06 7.59 15.70 6.46 2.87 6.04 19.36 6.13 16.79

I-Q range 2.69 1.63 4.50 3.95 8.71 1.73 3.73 1.04 4.91

10 - 1 9.51 -4.86 11.24 -7.52 -
27.52

-3.41 14.63 -3.49 11.43

S.8



Supplement Table. VI

The Dampening Effect of Fund Idiosyncratic Volatility
on the Flow-Performance Relationship

This table reports the results of the regression of investors net money flows on fund performance with and without
controlling for the extent of idiosyncratic risk-taking in the period from January 1994 to December 2007. The
dependent variable is the yearly percentage growth rate in fund net money flows (Flows). Lagged control variables
include: logarithm of fund TNA (FNDSIZE); logarithm of family TNA (FAMSIZE); logarithm of the number
of months since fund inception (FNDAGE); aggregate sales or purchases of securities (TRNOVR); volatility of
the previous 12-month returns (VOL); number of funds in the family (NFNDFAM); mutual fund performance
represented by the intercept of the unconditional Carhart (1997) four-factor model (NPERF); and fund total
operating expenses (OPEX). To capture the non-linearity in the flow-performance relationship, in column (ii)
we separate fund performance using the Sirri and Tufano (1998) piece-wise fractional rankings of performance
(LOWPERF, MEDPERF, HIGHPERF). We also control for the sensitivity of the dependent variable to different
levels of idiosyncratic risk-taking by using dummies of quintile portfolios of sorted fund idiosyncratic volatility,
where the dummy IDVOLQ1 equals 1 for funds in the quintile portfolio of low idiosyncratic volatility, while the
dummy IDVOLQ5 equals 1 for funds in the quintile portfolio of high idiosyncratic volatility. We illustrate the
results of different estimation models: Fama-Macbeth (F-M) with Newey-West standard errors, Fixed-Effect (F-
E) with standard errors clustered by fund and time, and Random-Effect (R-E) with standard errors clustered by
fund. All standard errors are reported in parentheses. One, two and three asterisks indicate statistical significance
at the 10%, 5%, and 1% level, respectively.

(i) (ii) (iii) (iv) (v) (vi)

NPERF 1.646∗∗∗ 1.738∗∗∗ 2.988∗∗∗ 2.633∗∗∗ 2.409∗∗∗

(0.143) (0.148) (0.307) (0.288) (0.216)
LOWPERF 0.432∗∗∗

(0.092)
MEDPERF 0.357∗∗∗

(0.074)
HIGHPERF 1.528∗∗∗

(0.139)
NPERF ∗ IDVOLQ2 -0.376 -0.257 -0.291

(0.422) (0.231) (0.228)
NPERF ∗ IDVOLQ3 -0.534 -0.379 -0.331

(0.373) (0.376) (0.238)
NPERF ∗ IDVOLQ4 -1.144∗∗∗ -1.055∗∗∗ -1.076∗∗∗

(0.201) (0.371) (0.234)
NPERF ∗ IDVOLQ5 -1.572∗∗∗ -1.717∗∗∗ -1.604∗∗∗

(0.439) (0.263) (0.221)
IDVOL 0.411 -0.276 1.261 0.253

(1.364) (1.262) (1.085) (0.525)
FNDSIZE -0.025∗∗∗ -0.038∗∗∗ -0.025∗∗∗ -0.027∗∗∗ -0.025∗∗∗ -0.043∗∗∗

(0.004) (0.005) (0.004) (0.004) (0.004) (0.003)
FNDAGE -0.049∗∗∗ -0.082∗∗∗ -0.050∗∗∗ -0.048∗∗∗ -0.061∗∗∗ -0.072∗∗∗

(0.006) (0.008) (0.004) (0.005) (0.006) (0.006)
FAMSIZE 0.002 0.004 0.002 0.002 0.004∗∗∗ 0.004∗∗∗

(0.004) (0.003) (0.004) (0.003) (0.001) (0.001)
NFNDFAM 0.001 0.001 0.002 0.001 -0.000∗ -0.001∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000)
TRNOVR 0.016∗ 0.005 0.016 0.021∗ 0.010 0.016∗∗∗

(0.009) (0.004) (0.010) (0.010) (0.009) (0.004)
VOL 0.386 0.052 0.835 0.897 -1.521 -1.164∗∗∗

(0.769) (0.522) (1.208) (1.105) (0.927) (0.175)
OPEX -5.856∗∗∗ -9.187∗∗∗ -6.573∗∗∗ -6.796∗∗∗ -7.990∗∗∗ -8.093∗∗∗

(1.387) (1.139) (1.139) (0.979) (1.118) (1.062)

Model F-M F-M F-M F-M F-E R-E
Std Err N-W N-W N-W N-W Fund-Time Fund
R2 13.8% 25.1% 14.5% 16.2% 14.2% 15.2%
N 24,224 33,225 24,224 23,664 23,664 23,664

S.9



D. Robustness Checks

In Supplement Table VII- IX, we report several robustness tests to different ways of mea-

suring key variables for the main results discussed in Section IV of our paper.

In Supplement Table VII we repeat the analysis of Table IV using the CAPM model and the

Fama-French (1993) three-factor model to estimate fund idiosyncratic volatility (IDVOL), per-

formance (NPERF), and systematic risk (BETA). Overall, the findings of Supplement Table VII

provide further support for Hypothesis 1 and Hypothesis 2 of our model.

** INSERT SUPPLEMENT TABLE VII HERE **

In Supplement Table VIII we repeat the analysis of Table IV by controlling for the measure

of fund active share proposed by Cremers and Petajisto (2009). The key independent variables

IDVOL, NPERF and BETA are estimated using the CAPM model and the Fama-French (1993)

three-factor model.

** INSERT SUPPLEMENT TABLE VIII HERE **

In Supplement Table IX we repeat the analysis of Table VI using the CAPM model and

the Fama-French (1993) three-factor model to estimate the key independent variables IDVOL,

NPERF, and BETA. The evidence of Table IX for either MGMT or OPEX confirms the validity

of Hypothesis ?? of our model.

** INSERT SUPPLEMENT TABLE IX HERE **

In Supplement Table X we repeat the analysis of Table VIII using the Fama-French (1993)

three-factor model to estimate fund idiosyncratic volaitlity IDVOL and gross performance

GPERF. The evidence of Table X confirms the validity of Hypothesis 4 of our model.

** INSERT SUPPLEMENT TABLE IX HERE **
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Supplement Table. VII

Robustness Tests: The Relationship between Fees and Idiosyncratic Risk
This table presents the estimated coefficients for the yearly regression of fund fees on selected fund characteristics
and idiosyncratic volatility over the period 1994 to 2007. The dependent variable (expressed in percentage
terms) is the fund management fees (MGMT) computed as operating expenses minus 12B-1 fees. Lagged control
variables include: logarithm of fund TNA (FNDSIZE); logarithm of family TNA (FAMSIZE); logarithm of
the number of months since fund inception (FNDAGE); aggregate sales or purchases of securities (TRNOVR);
volatility of the previous 12-month returns (VOL); and number of funds in the family (NFNDFAM). We use
the CAPM one-factor model (CAPM) and the Fama-French (1993) three-factor model (FF3) to estimate fund
risk adjusted returns (NPERF), fund idiosyncratic volatility (IDVOL), and fund systematic risk (BETA). In
columns (iv) and (viii) we include the interaction variables between fund performance and idiosyncratic risk
(either NPERF*IDVOL obtained from each factor model. To account for possible non-linearities in the fee-
volatility relationship we include either the square value (IDVOL2) or the square-root value (

√
IDVOL ) of fund

idiosyncratic volatility from each factor model. We isolate the effect of small funds on fund fees by including the
dummy variable SMLFND which is equal to 1 if a fund has less than $5million in assets under management. All
regressions include untabulated dummy variables for share classes and investment objectives. In all models, we run
the two-step estimation procedure of Fama-Macbeth (1973) with Newey-West standard errors (in parentheses).
One, two and three asterisks indicate statistical significance at the 10%, 5%, and 1% level, respectively.

CAPM CAPM CAPM CAPM FF3 FF3 FF3 FF3

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

IDVOL 9.353∗∗∗ 17.649∗∗∗ -7.461∗∗ 0.999∗∗∗ 9.672∗∗∗ 20.715∗∗∗ -10.282∗∗∗ 1.813∗∗∗

(1.415) (2.558) (2.690) (0.307) (1.015) (2.004) (2.187) (0.471)
BETA 0.051 -0.013 -0.011 0.006 0.039 -0.011 -0.023 -0.015

(0.039) (0.036) (0.035) (0.013) (0.043) (0.037) (0.036) (0.019)
NPERF -0.385∗∗∗ -0.366∗∗∗ -0.364∗∗∗ -0.016 -0.295∗ -0.322∗∗ -0.334∗∗ -0.096

(0.109) (0.101) (0.103) (0.057) (0.155) (0.110) (0.115) (0.070)
IDVOL2 -1.100∗∗∗ -1.537∗∗∗

(0.261) (0.259)√
IDVOL 5.656∗∗∗ 6.452∗∗∗

(0.920) (0.674)
NPERF*IDVOL -5.605∗∗∗ -7.088∗∗∗

(1.196) (1.921)
FNDSIZE -0.066∗∗∗ -0.065∗∗∗ -0.065∗∗∗ -0.061∗∗∗ -0.065∗∗∗ -0.064∗∗∗ -0.064∗∗∗ -0.060∗∗∗

(0.011) (0.011) (0.011) (0.004) (0.011) (0.010) (0.010) (0.004)
FNDAGE 0.000 0.000 -0.000 -0.008 -0.002 -0.003 -0.004 -0.010

(0.005) (0.005) (0.005) (0.015) (0.005) (0.005) (0.005) (0.015)
FAMSIZE -0.015∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.001 -0.015∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.001

(0.004) (0.004) (0.004) (0.001) (0.004) (0.004) (0.004) (0.001)
NFNDFAM 0.001 0.001 0.001 -0.001∗∗∗ 0.001 0.001 0.001 -0.001∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
TRNOVR 0.044∗∗∗ 0.042∗∗∗ 0.043∗∗∗ 0.013∗∗∗ 0.044∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.011∗∗∗

(0.006) (0.006) (0.006) (0.003) (0.006) (0.005) (0.005) (0.003)
VOL -1.850 -1.071 -0.800 -0.608 -0.146 -0.121 0.221 -0.495

(1.391) (1.273) (1.195) (1.132) (0.922) (0.964) (0.833) (1.121)
SMLFND 0.069∗∗ 0.065∗∗ 0.068∗∗ 0.059∗∗∗ 0.068∗∗ 0.063∗∗ 0.067∗∗ 0.059∗∗∗

(0.027) (0.026) (0.027) (0.021) (0.026) (0.025) (0.026) (0.021)

R2 36.1% 37.3% 37.1% 37.2% 36.4% 37.9% 37.7% 38.4%
N 24,135 24,135 24,135 24,135 24,135 24,135 24,135 24,135
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Supplement Table. VIII

Robustness Tests: Mutual Fund Fees, Active Share and Idiosyncratic Volatility
This table presents the estimated coefficients for the yearly regression of fund fees on selected fund characteristics
and idiosyncratic volatility over the period 1994 to 2007. The dependent variable (expressed in percentage terms)
is the fund management fees (MGMT) computed as operating expenses minus 12B-1 fees). As an alternative
dependent variable we also consider the fund total operating expenses (OPEX). Lagged control variables include:
logarithm of fund TNA (FNDSIZE); logarithm of family TNA (FAMSIZE); logarithm of the number of months
since fund inception (FNDAGE); aggregate sales or purchases of securities (TRNOVR); volatility of the previous
12-month returns (VOL); and number of funds in the family (NFNDFAM). We use the following three models to
estimate mutual fund risk adjusted returns NPERF, fund idiosyncratic volatility IDVOL, and portfolio exposure
to systematic risk (BETARMRF ): the CAPM model (CAPM) in columns (i)-(ii), the Fama and French (1993)
three-factor model (3-Factor) in columns (iii)-(iv), and the Carhart (1997) four-factor model (4-Factor) in columns
(v)-(vi). We also control for the average active share of fund portfolio, ACTIVESHR which is computed as half
of the difference between the holdings of a mutual fund and the holdings of its benchmark (see Cremers and
Petajisto (2009) for more details on the construction of this measure). We isolate the effect of small funds on
fund fees by including the dummy variable SMLFND which is equal to 1 if a fund has less than $5million in
assets under management. All regressions include untabulated dummy variables for share classes and investment
objectives. In all models, we run the two-step estimation procedure of Fama-Macbeth (1973) with Newey-West
heteroskedasticity and autocorrelation robust standard errors (in parentheses). One, two and three asterisks
indicate statistical significance at the 10%, 5%, and 1% level, respectively.

CAPM CAPM 3-Factor 3-Factor 4-Factor 4-Factor

MGMT OPEX MGMT OPEX MGMT OPEX
(i) (ii) (iii) (iv) (v) (vi)

IDVOL 6.737∗∗∗ 7.209∗∗∗ 7.693∗∗∗ 8.189∗∗∗ 8.228∗∗∗ 8.972∗∗∗

(1.665) (1.865) (1.338) (1.454) (1.431) (1.648)
BETARMRF -0.003 0.010 0.001 -0.016 0.108 0.108

(0.020) (0.028) (0.009) (0.014) (0.089) (0.089)
NPERF -0.299 -0.369∗ -0.449∗ -0.522∗∗ -0.524∗∗ -0.598∗∗∗

(0.168) (0.185) (0.239) (0.208) (0.199) (0.161)
ACTIVESHR 0.275∗∗∗ 0.265∗∗∗ 0.250∗∗∗ 0.238∗∗∗ 0.245∗∗∗ 0.233∗∗∗

(0.039) (0.053) (0.028) (0.030) (0.029) (0.028)
FNDSIZE -0.053∗∗∗ -0.068∗∗∗ -0.052∗∗∗ -0.066∗∗∗ -0.051∗∗∗ -0.066∗∗∗

(0.005) (0.005) (0.004) (0.003) (0.004) (0.004)
FNDAGE -0.036∗∗∗ -0.054∗∗∗ -0.036∗∗∗ -0.055∗∗∗ -0.037∗∗∗ -0.056∗∗∗

(0.004) (0.005) (0.005) (0.006) (0.006) (0.006)
FAMSIZE -0.010∗∗∗ -0.003 -0.010∗∗∗ -0.002 -0.010∗∗∗ -0.002

(0.003) (0.002) (0.003) (0.002) (0.003) (0.002)
NFNDFAM -0.000 -0.001∗ -0.000 -0.001∗ -0.000 -0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TRNOVR 0.040∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.029∗∗∗ 0.035∗∗∗ 0.029∗∗∗

(0.006) (0.007) (0.005) (0.007) (0.005) (0.007)
VOL -1.133 -0.900 0.667∗ 1.024 0.550 0.789

(0.653) (0.840) (0.344) (0.621) (0.359) (0.559)
SMLFND -0.007 -0.069 -0.001 -0.061∗ -0.002 -0.062∗

(0.045) (0.048) (0.036) (0.033) (0.034) (0.031)

R2 38.4% 66.0% 38.7% 66.0% 38.8% 66.1%
N 13,123 13,123 13,123 13,123 13,123 13,123

S.12
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Supplement Table. X

Mutual Fund Fees and Before-Fee Performance
This table examines the sensitivity of different mutual fund fees to gross risk-adjusted returns while controlling
for cross-sectional variations in fund idiosyncratic volatility from January 1994 to December 2007. We estimate
the fee-performance sensitivity using as dependent variable five different fee specifications: (a) management fees
(MGMT) computed as total operating expenses minus 12b-1 fees; (b) actual management fee reported by the
fund in its statement of operations and available over the period from 1999 through 2007 (MGMT2); (c) total
operating expenses (OPEX); (d) 12b-1 fees (12b-1); and (e) marketing fees (MKTING) which are computed as
12b-1 fees plus 1/7-th of fund front-end loads. Our main independent variable is the fund before-fee abnormal
returns, GPERF, computed as the difference between the fund’s before-fee excess return and the lagged vector
of betas multiplied by the vectors of factor realizations in month t. Fund gross abnormal returns are estimated
using the Fama-French (1993) before-fee risk-adjusted returns over the previous five years (requiring a minimum
of 48 months of available observations). To test our model prediction on the relationship between fees and fund
idiosyncratic volatility we include the variable IDVOL. To account for possible non-linearities in the fee-volatility
relationship we introduce the variable

√
IDVOL . We isolate the effect on the fee-performance sensitivity of

IDVOL using the interaction term GPERF × IDVOL. All regression models are estimated using the Fama
and MacBeth (1973) approach with Newey and West (1987) heteroskedasticity and autocorrelation consistent
standard errors (in parentheses). One, two and three asterisks indicate statistical significance at the 10%, 5%,
and 1% level, respectively.

Fee GPERF IDVOL GPERF× IDVOL
√
IDVOL R2 Obs.

(i) MGMT -0.138 0.6% 10,934
(0.123)

(ii) MGMT -0.106 13.140∗∗∗ 11.2% 10,934
(0.142) (1.255)

(iii) MGMT -0.069 14.899∗∗∗ -22.980 13.4% 10,934
(0.121) (1.543) (16.890)

(iv) MGMT -0.060 -7.427 -32.997∗ 7.292∗∗∗ 15.4% 10,934
(0.133) (6.882) (16.672) (1.786)

(v) MGMT2 -0.108 0.3% 9,359
(0.129)

(vi) MGMT2 -0.120 5.165∗∗∗ 2.3% 9,359
(0.135) (1.327)

(vii) MGMT2 -0.090 5.531∗∗∗ -12.080 2.4% 9,359
(0.122) (1.555) (8.201)

(viii) MGMT2 -0.055 -1.793 -3.755 6.006∗∗∗ 3.4% 9,359
(0.124) (2.755) (2.459) (1.025)

(ix) OPEX -0.370∗∗ 0.8% 10,934
(0.177)

(x) OPEX -0.339∗ 11.850∗∗∗ 6.9% 10,934
(0.190) (1.194)

(xi) OPEX -0.253∗ 13.627∗∗∗ -53.326∗∗ 9.1% 10,934
(0.144) (1.503) (21.564)

(xii) OPEX -0.248∗ -9.897 -53.262∗∗ 7.700∗∗∗ 10.2% 10,934
(0.135) (7.079) (20.738) (1.806)

(xiii) 12B-1 -0.232∗∗ 0.8% 10,934
(0.096)

(xiv) 12B-1 -0.233∗∗ -1.290∗ 1.0% 10,934
(0.096) (0.659)

(xv) 12B-1 -0.184∗ -1.272∗∗ -17.346∗∗∗ 1.5% 10,934
(0.092) (0.571) (5.343)

(xvi) 12B-1 -0.188∗ -2.470 -20.265∗∗∗ 0.409 1.6% 10,934
(0.095) (2.200) (5.916) (0.617)

(xvii) MKTING -0.393∗∗ 0.7% 10,934
(0.154)

(xviii) MKTING -0.293 2.863 3.0% 10,934
(0.181) (3.601)

(xix) MKTING 0.071 6.897 -84.127 5.7% 10,934
(0.348) (7.573) (56.237)

(xx) MKTING 0.117 -13.260 -86.398 5.917∗ 5.0% 10,934
(0.336) (12.221) (53.941) (3.159)
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